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KEYWORDS Abstract Background/purpose: Accumulated studies investigate the association of single-

Carcinogen nucleotide polymorphisms (SNPs) in carcinogen metabolizing enzymes with oral potentially
metabolism; malignant disorders (OPMD) risk. However, these results were inconsistent and conflicting.

Oral potentially The purpose of this pooled analysis was to systematically evaluate the associations of
malignant SNPs in 6 enzymes (CYP1A1, CYP2E1, GSTM1, GSTM3, GSTT1 and GSTP1) with risk of OPMD
disorders; occurrence.

Oral leukoplakia; Materials and methods: A systematic evaluation was performed to identify all eligible

Meta-analysis; case ndash;control studies on the association between SNPs in 6 enzymes and OPMD onset.

Single-nucleotide 0Odds ratios (ORs) and 95 % confidence intervals (Cls) were pooled to estimate association
polymorphisms strength.
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Results: A significant association of CYP2E1 Pstl polymorphism with OPMD was found (OR, 1.46;
95%Cl, 1.07—2.00) in 430 cases and 818 health controls. A significant association of GSTM1 null
genotype with OPMD, especially oral leukoplakia, was found (OR, 1.72; 95%Cl, 1.24—2.37) in
2228 cases and 4425 controls. A significant association of GSTT1 null genotype with OPMD,
particularly oral submucous fibrosis, was found (OR, 1.50; 95%Cl, 1.01—2.22) in 1798 cases
and 3934 controls. A marginally significant association of GSTM3 polymorphism with OPMD
was found (OR, 1.41; 95%Cl, 1.00—1.98) in 321 cases and 622 controls. There was no significant
association of polymorphisms in CYP1A1, CYP2E1 Rsal variant, and GSTP1 with OPMD.

Conclusion: This analysis for the first time investigated SNPs in carcinogen metabolizing en-
zymes with OPMD, suggesting that polymorphisms in CYP2E1 Pstl, GSTM1, GSTM3 and GSTT1
play roles in OPMD occurrence and highlighting their potential in risk stratification and early

detection strategies.

© 2026 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Oral potentially malignant disorders (OPMD) contain a
spectrum of lesions including oral leukoplakia (OLK), oral
erythroplakia, and oral submucous fibrosis (OSF), which
exhibit a significantly increased risk for malignant trans-
formation to oral squamous cell carcinoma.' Environmental
risk factors such as tobacco and alcohol use and betel quid
chewing deliver carcinogens to the oral mucosa via meta-
bolic activation, inducing genetic mutations, inflammatory
responses, and cellular damage that can lead to malignant
transformation.? The metabolism of these procarcinogens
involves bioactivation and detoxification mediated by
carcinogen metabolizing enzymes that can detoxify chem-
ical carcinogens within the oral mucosa, which are divided
into Phase | and Phase Il enzymes.” Cytochrome P450 1A1
(CYP1A1) and cytochrome P450 2E1 (CYP2E1) are both vital
Phase | enzymes, that convert lipophilic carcinogens into
more hydrophilic compounds to facilitate excretion.?
Glutathione S-transferases (GSTs), mainly four isoenzymes
GSTM1, GSTM3, GSTT1 and GSTP1, constitutes the major
Phase Il metabolism of carcinogens.*

Single-nucleotide polymorphisms (SNPs) in carcinogen
metabolizing enzymes cause variation in the ability to
metabolize carcinogens that render individuals susceptible
to OPMD risk.> The polymorphisms of CYP genes single-
nucleotide sites can cause changes in the enzyme activity
of CYP1A1 and CYP2E1. The null genotype or variation of GST
genes could result in the inactivation of GSTM1, GSTM3,
GSTT1 and GSTP1 enzymes.® Currently, the results of asso-
ciations between SNPs in these enzymes and OPMD risk
remained incomplete and inconsistent. The association of
SNPs in GST genes with the risk of OLK and OSF was evalu-
ated by a previous meta-analysis, respectively.®’ However,
there is lack of comprehensive evaluation of SNPs in these
enzymes with OPMD risk based on all the available studies.
Therefore, to gain more precise evidence for the associa-
tion, the purpose of this pooled analysis was to systemati-
cally evaluate the associations of SNPs in these 6 enzymes
with OPMD risk of occurrence based on all eligible
case—control studies.
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Materials and methods

Search strategy and data extraction

A comprehensive literature search was conducted on
PubMed, Medline, and Web of Science databases for all
relevant publications on the associations between SNPs
and OPMD susceptibility, without any restriction on July
20, 2025. According to the search strategy described in
supplementary Table S1, we used medical subject terms
(SNP OR polymorphism OR genotyp®) AND (cytochrome
P450 OR glutathione OR CYP1x OR CYP2x OR GSTM=
OR GSTT* OR GSTP#*) AND the synonyms and subtypes of
OPMD in all fields. The asterisk indicates a wildcard used
to search for all endings including fifth or more root words.
In addition, the reference lists given in relevant articles
and reviews were also considered for eligible studies.
The inclusion criteria for eligible articles were as follows:
(i) human case—control studies; (ii) studies on associations
of polymorphisms in carcinogen metabolizing genes
with OPMD; (iii) sufficient genotyping data for the
computation of odds ratio (OR) and 95 % confidence in-
terval (Cl); and (iv) histologically confirmed diagnosis of
OPMD. On the contrary, the exclusion criteria were as
follows: (i) not a human case—control study; (ii) over-
lapping or duplicate publications; (iii) no genotype data
reported; and (iv) the number of the studies on a single
gene was <3.

Base on the flow diagram of the Preferred Reporting
ltems for Systematic Reviews and Meta-Analyses
(PRISMA) guideline (supplementary Figure S1), 28 eligible
case—control studies were retrieved for detailed
evaluation from the literature databases (Table 52).87%°
The following information were extracted from each study:
first author’ name, publication year, country of origin,
ethnicity, genotyping methods, number of cases and con-
trols, age, sex, tobacco and alcohol use, betel quid chew-
ing, source of controls, genotype distributions of cases
and controls (supplementary Table S2). Ethical approval
and informed consent were not applicable for a meta-
analysis.
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Statistical analysis

As per the statistical method described previously,*® the
strength of association of SNPs with OPMD susceptibility
was determined by OR with 95 % Cl. The statistical signifi-
cance of the pooled OR was evaluated using the Z-test, and
the heterogeneity of the ORs was tested by y?—based Q-
test and |? statistics. ORs were pooled according to the
fixed-effects model (Mantel-Haenszel model) and random-
effects model (DerSimonian-Laird model). Additionally,
the potential publication bias was visually examined by the
Begg’s funnel plot and Egger’s test. All statistical analyses
were performed with the software Review manager 5.4
(The Cochrane Collaboration, Oxford, UK) using two-sided P
value, and the value of <0.05 was considered as statisti-
cally significant.

Results

Association of polymorphisms in CYP genes with
OPMD

There were 13 eligible studies on CYP1A1 polymorphism in
OPMD onset (Table S2), comprising 949 OPMD patients and
2594 healthy individuals for CYP1A1 Mspl variant, and 582
patients with 1148 healthy individuals for the Ncol variant.
Overall, no significant association between CYP1A1 Mspl

polymorphism and OPMD susceptibility was found with the
random-effects model (pooled OR, 0.99; 95%Cl, 0.59—1.63;
Pheterogeneity<<0.00001; Fig. 1A). In the stratified analysis by
OPMD categories, similar results were observed in the OLK
subgroup (OR, 0.87; 95%Cl, 0.33—2.32), the OSF subgroup
(OR, 1.50; 95%Cl, 0.22—10.05), and the non-specified OPMD
subgroup (OR, 0.86; 95%Cl, 0.56—1.34). Consistently, no
significant association of CYP1A1 Ncol polymorphism with
OPMD risk was found with the random-effects model
(pooled OR, 1.42; 95%Cl, 0.51—3.95; Pheterogeneity <0.00001;
Fig. 1A), with similar findings across all OPMD subgroups.

There were 4 eligible studies on CYP2E1 polymorphism
in OPMD onset, including 430 OPMD patients and 818
healthy individuals for CYP2E1 Pstl variant, and 355 pa-
tients with 668 healthy individuals for the Rsal variant.
Overall, a significantly increased risk of CYP2E1 Pstl
polymorphism with OPMD susceptibility was found with the
fixed-effects model (pooled OR, 1.46; 95%CI, 1.07—2.00;
Preterogeneity = 0.19; Fig. 1B). Stratified analysis revealed a
significantly increased risk in the OSF subgroup (OR, 3.14;
95%Cl, 1.15—8.62), but not found in the OLK subgroup (OR,
1.35; 95%Cl, 0.97—1.88). No significant association of
CYP2E1 Rsal polymorphism with OPMD onset was found
with the fixed-effects model (pooled OR, 1.24; 95%Cl,
0.89—1.72; Preterogeneity = 0.06; Fig. 1B). Publication bias
was evident for CYP1A1 (P < 0.05, Egger’s test;
Figure S2A), but not CYP2E1 polymorphisms (P > 0.05,
Egger’s test; Figure S2B).
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Figure 1

Forest plots of meta-analysis of genetic polymorphisms in Part | carcinogen metabolizing enzymes and oral potentially

malignant disorders (OPMD) compared to healthy control. (A) CYP2A1 Mspl and Ncol, (B) CYP2E1 Pstl and Rsal. Cl, confidence

interval. OLK, oral leukoplakia. OSF, oral submucous fibrosis.
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Association of polymorphisms in GST genes with
OPMD

There were 24 eligible studies on GSTM1 polymorphism in
OPMD susceptibility (Table S2), containing 2228 OPMD pa-
tients and 4425 healthy individuals. Overall, a significant
increased risk of OPMD susceptibility with GSTM1 null ge-
notype was found with the random-effects model (pooled
OR, 1.72; 95%Cl, 1.24—2.37; Pheterogeneity<0.00001; Fig. 2A).
Stratified analysis revealed a significantly increased risk in
the OLK subgroup (OR, 1.98; 95%Cl, 1.21—3.23), but not in
the OSF subgroup (OR, 1.44; 95%Cl, 0.90—2.30) and the non-
specified OPMD subgroup (OR, 1.24; 95%CI, 0.82—1.88).

There were 18 eligible studies evaluating GSTT1 poly-
morphism in OPMD onset, involving 1798 OPMD patients and
3934 healthy controls. Overall, a significant association of
OPMD susceptibility with GSTT1 null genotype was found
with the random-effects model (pooled OR, 1.50; 95%ClI,
1.01=2.22; Preterogeneity<0.00001; Fig. 2B). Stratified anal-
ysis revealed a significantly increased risk in the OSF group
(OR, 2.11; 95%Cl, 1.26—3.53), but not in the OLK group (OR,
1.33; 95%Cl, 0.79—2.23) and the non-specified OPMD group
(OR, 1.38; 95%Cl, 0.13—15.18).

There were 3 eligible studies on GSTM3 polymorphism in
OPMD susceptibility, comprising 321 OPMD patients and 622

association of OPMD susceptibility with GSTM3 poly-
morphism was found with the fixed-effects model (pooled
OR, 1.41; 95%Cl, 1.00—1.98; Pheterogeneity = 0.68; Fig. 2C).
Besides, there were 6 eligible studies investigated GSTP1
polymorphism in OPMD susceptibility, including 841 OPMD
patients and 2043 healthy controls. No significant associa-
tion was found with the fixed-effects model (pooled OR,
0.87; 95%Cl, 0.74—1.03; Pheterogeneity = 0.24, 1 = 26 %;
Fig. 2D). Publication bias was evident for GSTM1 and
GSTT1 (P < 0.05, Egger’s test; Figure S2C, F), but not
GSTM3 and GSTP1 polymorphisms (P > 0.05, Egger’s test;
Figure S2D, E).

Discussion

It is well-known that the complex interaction between ge-
netic and environmental factors can affect individual sus-
ceptibility to oral cancer and precancer, which pose a
significant public health challenge, particularly in South/
Southeast Asian regions including India, Taiwan and main-
land of China. The use of tobacco, alcohol, betel quid are
well-established risk factors in oral carcinogenesis, yet the
precise molecular mechanisms underlying genetic suscep-
tibility remain incompletely characterized.> The com-
pounds of first-level carcinogens require biotransformation
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Figure 2

Forest plots of meta-analysis of genetic polymorphisms in Part Il carcinogen metabolizing enzymes and oral potentially

malignant disorders (OPMD) compared to healthy control. (A) GSTM1, (B) GSTT1 (C) GSTM3, (D) GSTP1. ClI, confidence interval.

OLK, oral leukoplakia. OSF, oral submucous fibrosis.

607



C. Lou, Y. Zhu, L. Shi et al.

environment—gene interaction in carcinogenesis is re-
flected by Phase | (e.g. CYP1A1, CYP2E1) and Phase Il (e.g.
GSTM1, GSTM3, GSTT1 and GSTP1) enzymes that are
related to the carcinogen metabolism.>* In the previous
meta-analyses, both GSTM1 and GSTT1 null polymorphisms
were reported to be significantly increased the risk of OLK
and OSF, whereas the GSTP1 polymorphism does not
contribute to the development of OLK.®”

This study for the first time identified all eligible studies
to draw a more precise estimation of the genetic associa-
tions between SNPs in these 6 enzymes and OPMD onset in a
single meta-analysis, because the results of these previous
studies were conflicting.®>° This pooled-analysis provided a
more accurate estimation of the association between SNPs in
carcinogen metabolism enzymes and OPMD onset compared
with individual study. We found that SNPs in CYP2E1 Pstl
variant, GSTM1, GSTM3 and GSTT1 were significantly asso-
ciated with an increased risk of general OPMD, indicating
these SNPs may be risk factors of OPMD. As for subtypes of
OPMD, GSTM1 null polymorphism was significantly increased
the risk of OLK and GSTT1 null polymorphism significantly
increased the risk of OSF. Statistically, the two subgroups
were of more evidently significant differences. These find-
ings provide evidence that GSTM1 and GSTT1 null poly-
morphism significantly contribute to the development of OLK
and OSF, respectively. These polymorphisms may reduce the
capacity of detoxifying chemical carcinogens, leading to
individuals in susceptibility to OPMD.

Although the efforts in performing a comprehensive
analysis, certain limitations need to be addressed in this
study. The number of eligible studies available with the
sample size of most studies were small. The effect of the
confounding factors, such as whether heath controls with or
without areca nut chewing habit, the habit and duration of
areca chewing, tobacco and alcohol use, were not esti-
mated because of data unavailable in most studies (Table
S2). Besides, the evidence of heterogeneity was observed
in some genetic models possibly owing to methodological
diversity in different studies. The negative results of
CYP1A1, CYP2E1 Rsal or GSTP1 in OPMD onset analysis may
be biased. This could be attributed to the relatively limited
sample size, constrained geographic distribution and
restricted ethnic diversity, particularly the fact that the
majority of participants originated from India, may have
introduced potential biases in the analysis. Furthermore,
variations in lifestyle and external environmental factors
among different populations may influence OPMD onset.
Therefore, more well-designed studies with larger sample
size and multiple ethnic groups, such as Taiwan and main-
land of China, are needed to consolidate the findings.
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