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Introduction

Cleft lip and/or palate (CL/P) is one of the most common
craniofacial anomalies, resulting from complex interactions
between genetic and environmental factors." These de-
fects primarily arise during embryonic development, when
the medial nasal process fails to establish or maintain
contact with the lateral nasal and maxillary processes.? CL/
P may involve the lip, the hard palate, and can extend to
the soft palate. In some cases, the cleft also affects adja-
cent soft tissue structures of the face, leading to more
complex orofacial clefts.?

The prevalence of CL/P varies according to race, geog-
raphy, socioeconomic status, and cleft type. A systematic
review conducted by Salari et al. estimated the global
prevalence of orofacial clefts.” The prevalence of lip cleft
was reported as 0.30 per 1000 live births based on 57 reviews
including 17,907,569 participants. Palate cleft had a preva-
lence of 0.33 per 1000 live births from 59 reviews comprising
21,088,517 participants, whereas cleft lip and palate com-
bined showed the highest prevalence at 0.45 per 1000 live
births, derived from 55 reviews including 17,894,673 par-
ticipants. Among global populations, studies consistently
report the highest occurrence in Asians, followed by Cau-
casians, with the lowest incidence observed in individuals of
African descent.>~’ In China, a meta-analysis covering the
period 1986—2015 reported an overall incidence of orofacial
clefts as high as 1.4 per 1000 live births.® In the United States,
cleft lip with or without cleft palate ranks as the fourth most
common congenital anomaly.> Recent US national data
(2016—2020) report prevalence rates of 0.34 per 1000 for
cleft lip, 0.62 per 1000 for cleft palate, and 0.65 per 1000 for
combined cleft lip and palate, which are slightly higher than
the global estimates reported above.’ Regarding socioeco-
nomic status, family income has been identified as a poten-
tial determinant of cleft prevalence.'® Sabbagh et al.
reported that lower monthly family income was associated
with a higher occurrence of orofacial clefts, whereas higher
income was linked to a reduced prevalence.'" CL/P signifi-
cantly impacts quality of life and imposes substantial treat-
ment costs on both families and healthcare systems. Beyond
the aesthetic consequences, infants with CL/P frequently
experience feeding difficulties that may impair physical
growth. If left untreated, CL/P can severely affect speech
development and, in some cases, lead to hearing loss or
malocclusion.'? According to the U.S. National Institute of
Dental and Craniofacial Research, healthcare costs for chil-
dren aged 1—10 years with combined cleft lip and palate are
six times higher than those for unaffected children.
Consequently, comprehensive management presents
particular challenges, especially in developing countries.

Given the morphological diversity of CL/P, its diagnosis
and treatment require a multidisciplinary approach tailored
to the needs of each patient. Advances in molecular
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biomedicine now provide counseling resources for couples
prior to conception.'® Prenatally, CL/P can often be
detected through multiplanar ultrasound performed by
obstetricians.'® Before surgery, orthodontists may employ
non-invasive appliances such as nasoalveolar molding to
reduce craniofacial discrepancies.’® By approximately
three months of age, reconstructive surgery is typically
performed, aiming not only to restore biological function
but also to improve facial aesthetics.'” Nevertheless, many
patients continue to experience speech impairments,
making early speech-language therapy essential.'® In
addition, maxillary growth deficiency is frequently reported
in CL/P patients and often results in skeletal Class llI
malocclusion.'®?° In such cases, bone grafting and orthog-
nathic surgery may be necessary to achieve stable func-
tional and aesthetic outcomes.

One of the most impressive technological advances
today is Artificial intelligence (Al). By processing large
volumes of medical data with complex algorithms, Al sys-
tems can learn and improve performance across various
scenarios. ' With its growing potential, Al has been rapidly
applied in medicine, including CL/P care. In this field, Al
has demonstrated its value in multiple domains, including
imaging diagnostics, intraoral assessment, reconstructive
surgery, and speech therapy.’”””"7"?° As its role in the
multidisciplinary management of CL/P becomes increas-
ingly evident and related advancements continue to
emerge, this updated review was undertaken to summarize
and synthesize the recent applications of Al in the diag-
nosis, treatment, and care of patients with CL/P.

Materials and methods
Information sources and search strategy

To address the question, “In what aspects can Al be applied
to support the diagnosis, treatment, and care of patients
with CLP?” we conducted a full-text review using relevant
search terms across two databases: PubMed and IEEE. The
following search string was entered into each database:
(“cleft lip” OR “cleft palate” OR “cleft lip and palate” OR
“orofacial clefts”) AND ("artificial intelligence” OR "“ma-
chine learning” OR “deep learning” OR “neural networks”
OR “convolutional neural network").

Selection criteria

The search was restricted to articles published between
January 1, 2015, and May 31, 2025, to capture recent ap-
plications of Al. Inclusion criteria were studies directly
related to the application of Al, machine learning (ML), or
deep learning (DL) in the diagnosis, treatment, or care of
CL/P. Eligible study designs included observational studies,
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model validation studies, and systematic or narrative re-
views. Only articles published in English were considered.
Exclusion criteria were abstracts without accessible full
texts, non-scientific materials such as book chapters, edi-
torials, announcements, letters, single case reports, or
small case series.

Article selection and data extraction

The search protocol was developed in accordance with the
PRISMA 2020 framework for systematic reviews and followed
a three-step process (Fig. 1). First, potentially relevant re-
cords were retrieved using predefined inclusion criteria and
a comprehensive search string. Duplicate articles identified
across databases were removed prior to screening.

In the second step, two independent reviewers carefully
assessed the titles, abstracts, and full-text availability of
the retrieved articles to determine eligibility. In cases of
disagreement, a third reviewer evaluated the article and
discussed it with the initial reviewers until a consensus was
reached. Finally, all studies that met the inclusion criteria
were analyzed in depth to determine which main aspects of
CL/P diagnosis, treatment, or care were supported by Al,
and to describe how Al was applied in these contexts.

Results

From the two databases, PubMed (n = 105) and IEEE
(n = 29), atotal of 134 records were initially identified. After

the removal of five duplicates, 129 records remained for title
and abstract screening. During the eligibility assessment, 78
studies were excluded for the following reasons: non-
scientific materials (n 5), inaccessible full texts
(n = 55), and studies not related to Al, CL/P, or both (n = 18).
Ultimately, 51 full-text articles that met all inclusion criteria
were included in the detailed review. To provide a clearer
overview of their scope, these studies were further analyzed
and categorized into seven main groups based on their pri-
mary applications. Imaging diagnosis accounted for the
largest number, with 13 studies,>?' 3 followed by speech-
language therapy (n = 8),'®2%33738 genetic and molecular
approaches (n 8),"3% % surgical intervention
(n = 6),"** % intraoral diagnosis (n = 6),"'®>" " risk pre-
diction (n = 2),°>* and caregiver education (n = 3).°®%°|n
addition, five review articles provided a broader perspective

by addressing multiple aspects of Al applications in CL/
P.19,61764

Imaging diagnosis

Multiplanar ultrasound during mid-gestation remains one of
the most reliable and accurate methods for evaluating CL/
P. However, it has certain limitations, including lengthy
examination times and dependence on operator expertise.
To address these drawbacks, He developed CLP-Net, a
model that automatically identifies diagnostic planes on 3D
ultrasound images.'® This system received highly positive
feedback from experts and reduced examination time by

Duplicate records were removed before screening (n = 5)

Publications were excluded from the review based on predefined

Non-scientific materials (n = 5)
Articles without accessible full text (n = 55)

Articles not related to Al, CLP, or both (n = 18)
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Figure 1  Flow diagram of study selection based on the PRISMA 2020 guidelines. Al: artificial intelligence; CL/P: cleft lip and/or
palate.

24



Journal of Dental Sciences 21 (2026) 22—30

15s (31.3 %) for experienced clinicians and by 63 s (38.9 %)
for less experienced practitioners. Another challenge in
applying ML to CL/P ultrasound diagnosis is the limited
availability of high-quality imaging data, which is often
difficult to collect due to ethical concerns. To overcome
this, Nantha et al. proposed a few-shot learning framework
that integrates Vision Transformers with Siamese Neural
Networks (SNNs), combining ultrasound tongue images with
speech spectrograms.?? By leveraging multimodal features
from both imaging and speech data, the model achieved
82.76 % classification accuracy across three CL/P subtypes
and demonstrated potential for application in data-limited
settings.

In the diagnosis of CL/P using 2D panoramic radiographs,
Kuwada et al. introduced two DL models built on the
DetectNet architecture.?® Model 1 was trained on unilateral
alveolar cleft (AC) cases, while Model 2 included both AC
patients and healthy controls. Model 2 demonstrated lower
false-positive rates and higher overall accuracy compared
with both Model 1 and human observers. To further
differentiate between unilateral and bilateral AC, the au-
thors extended their work by developing four additional
models: Model U (unilateral AC + controls), Model B
(bilateral AC + controls), Model C1 (unilateral + bilateral
AC + controls), and Model C2 (similar to C1 but with
expanded input features).?” Diagnostic sensitivity improved
across models, with Model C2 achieving the highest per-
formance (0.89), comparable to that of experienced
radiologists.

In subsequent work on palate clefts (PC), two models
were proposed: Model A, which employed DetectNet to
identify the maxillary incisor region before classifying PC,
and Model B, which used VGG-16 to directly analyze
panoramic images.?> Model A achieved the best results with
perfect sensitivity and specificity (AUC 0.95), out-
performing both Model B (AUC = 0.93) and radiologists
(AUC = 0.70 and 0.63).

Early detection of anomalies such as missing, ectopic, or
morphologically abnormal teeth is also crucial for CL/P
treatment planning. Diagnocat, a convolutional neural
network (CNN)-based software, was evaluated for tooth
detection and classification in panoramic radiographs of
CL/P patients.?' The software demonstrated high sensi-
tivity (0.98 + 0.03) and precision (0.96 + 0.04), although
performance varied by age group and anatomical location,
with younger patients and the left maxillary region showing
higher rates of false-positive and false-negative results.

For cephalometric analysis, ML models have also been
applied to automate landmark identification.?® Alam and
Alfawzan investigated dental characteristics in individuals
with and without CL/P and found significant differences in
eight dental variables.?® Regarding craniofacial structures,
individuals with CL/P exhibited significantly reduced SNA,
ANB, and Wits appraisal values compared with the non-cleft
group, whereas SNB showed no difference.?' In addition, a
higher prevalence of Sella Turcica bridging was observed in
the CLP group.*?

More recently, 3D imaging techniques have shown
considerable promise in assessing cleft-related defects.
Miranda et al. developed a DL model capable of classifying
the severity of alveolar cleft defects reconstructed from
CBCT images, achieving high accuracy (0.823) and
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sensitivity (0.816).2> Wang et al. applied a 3D U-Net to
automatically segment the maxilla and cleft region on CBCT
scans and identified significant hypoplasia of the maxilla on
the cleft side, particularly in the pyriform aperture and
alveolar crest regions adjacent to the defect.?’ Further-
more, 3D U-Net has been used to reconstruct and autofill
cleft defects, providing clinicians with a predictive under-
standing of how alveolar bone grafting may influence
maxillary development.?

Intraoral diagnosis

In clinical practice, intraoral examination plays an impor-
tant role in establishing treatment plans for children with
CL/P. Traditional dental impressions with alginate are
commonly used for defect analysis; however, this method
has several drawbacks, including material deformation,
patient discomfort, and difficulty in accurately capturing
the dental arch morphology. The development of 3D scan-
ning technology, combined with Al support, has provided
promising alternatives. Smartphones have been employed
as substitutes for professional scanners to generate 3D
surface models of intraoral structures. For example, the
KIRI Engine application was shown to produce 3D scans with
minimal error (approximately 0.22 mm), comparable to
specialized scanning devices.” Complementing this, Lin-
gens et al. introduced a method leveraging CNN-supported
landmark detection from single CL/P images to enable 3D
reconstruction.’® Although performance on real patient
images was lower than that achieved with synthetic data,
the findings suggest that expanding datasets could improve
reliability. Collectively, these approaches offer strategies
that overcome the limitations of traditional methods while
remaining affordable in low-resource settings. In addition,
Agaronyan et al. developed a DL model capable of auto-
matically recognizing anatomical landmarks on 3D palatal
models of CL/P infants, achieving 94.44 % accuracy with a
mean absolute error of 1.676 + 0.959 mm.> Woodsend
et al. also introduced an automated dental landmarking
tool that demonstrated high applicability.’® These Al-
assisted 3D models provide a rapid and accurate means of
designing preoperative orthopedic plates.>? Schnabel et al.
further emphasized that appliances fabricated with Al
support achieved excellent fit (average error of about
0.1 mm) and rapid design times (less than 3 min)."®

Surgical intervention

Surgical repair of CL/P is often the most critical step in
restoring the facial structure of affected children. Typically
performed at around three months of age, the procedure
aims not only to restore biological function but also to
improve facial aesthetics.®® Sayadi et al. developed a ML
model based on High-Resolution Net that automatically
recognized anatomical landmarks on CL/P patient images
and videos with a mean error of 0.029—0.055, thereby
supporting more precise determination of surgical incision
lines." In contrast to approaches that rely on anatomical
landmarks, Rosero et al. proposed a DL model using a SNN
to assess lip symmetry, an important aesthetic indicator
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after surgery. This model employed a contrastive method to
objectively compare both halves of the lip.*'

Evaluating surgical outcomes plays a critical role in
refining techniques and improving treatment quality.
Recently, ML has been applied to simulate facial morphology
and predict clinical results. Hayajneh et al. presented a
technique based on StyleGAN2 model adaptation to assess
the extent of facial deformity.*’ This method reconstructed
a normalized version of the patient’s face and measured the
difference between the original and simulated images to
calculate a deformity score, rather than relying solely on
clinician evaluation. It provided an objective measurement
of defects and demonstrated a strong correlation with expert
assessments. However, a major limitation of StyleGAN
models is their requirement for large training datasets, while
real patient images are not always easily obtainable. More-
over, the potential for data leaks raises privacy concerns, as
patient identities could be inadvertently revealed. To
address these issues, Chen et al. proposed an inpainting
model based on convolutional neural networks (CNNs) that
reconstructs affected regions from patient images using only
normal facial data for training, thereby ensuring data pri-
vacy.”® Hayajneh et al. further improved the inpainting
technique by incorporating discrepancy optimization.“® This
enhanced system reconstructed facial images, identified the
location and severity of deformities, and demonstrated rapid
processing times with strong correlation to expert opinions,
making it a valuable tool for treatment planning and post-
operative monitoring. In addition, Hayajneh et al. intro-
duced CleftGAN, a model capable of generating synthetic
cleft images to support ML training and validation.*” The
model produced facial images with cleft features derived
from normal faces and improved realism by integrating
available patient data. CleftGAN not only addressed the
shortage of clinical cleft datasets but also opened new op-
portunities for developing high-quality data resources for
research and treatment.

Speech-language therapy

Children with CL/P often present with a speech disorder
known as hypernasality, which results from velopharyngeal
insufficiency (VPl) and adversely affects both speech
intelligibility and voice quality. Whisper (OpenAl) applied
large language models to develop an algorithm for detect-
ing hypernasality from speech, achieving an accuracy of
97 %.*> Beyond diagnosis, the Objective Hypernasality
Measure model was trained on normal speech data to
quantify the severity of hypernasality and demonstrated
strong correlation with expert evaluations (r > 0.7)."®
Saxon et al. applied ML using a Hidden Markov Model-
Gaussian Mixture Model framework to extract acoustic
features from speech.*” Interestingly, although these fea-
tures were initially derived from hypernasal speech in
Parkinson’s disease, the model was still able to identify
hypernasality in CL/P children, despite the entirely
different underlying mechanism of VPI.

From another perspective, Ha et al. developed a DL
diagnostic system utilizing videofluoroscopy to detect VPl in
CL/P patients. The results demonstrated high accuracy,
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with ResNet and Xception identified as the most effective
models for VPI diagnosis.>> In addition to hypernasality,
many children with CL/P also develop other speech disor-
ders, such as pharyngeal fricatives-an atypical sound pro-
duced in the pharyngeal region to compensate for the lack
of oral pressure. Using a Decision Tree algorithm, He et al.
proposed an acoustic analysis method to automatically
detect pharyngeal fricatives.”’ The system achieved
effective discrimination with an accuracy of 88—89 % and
an overall model performance of 93 %. Another study
introduced the Objective Articulation Measure, a frame-
work for evaluating speech production through
consonant—vowel transition analysis.>® This model per-
formed well for children with CL/P and showed a high
correlation with conventional perceptual assessments.
Another investigation examined the re-identification risk
of pathological speech, including CL/P, using a DL-based
automatic speaker verification system. Despite atypical
acoustic features, the system was still able to achieve
recognition accuracy comparable to normal speech under
certain conditions, while in other settings the re-
identification risk was even higher.?® The authors
concluded that voices of individuals with CL/P may serve as
identifiable markers, thereby compromising speaker ano-
nymity. To mitigate this risk, Tayebi Arasteh et al. employed
DL-based anonymization using the McAdams Coefficient,
which significantly reduced speaker identifiability (by up to
1933 %) while preserving data utility for clinical analysis.>*

Caregiver education

Caring for children with CL/P requires continuous education
and support from both families and medical staff. Mahedia
et al. suggested that ChatGPT could assist in postoperative
counseling by providing responses that are not only consis-
tent with clinical guidelines but also tailored to the patient’s
clinical status.®® Similarly, Chaker et al. reported that
ChatGPT reduced the time and effort needed to develop
educational resources and was able to correctly respond to
13 commonly asked postoperative care questions with an
accuracy of approximately 69 % compared with expert
responses. >’

In addition, assessing patient-reported outcomes is
essential for optimizing care in children with CL/P. The
CLEFT-Q is widely used to evaluate quality of life in the
post-treatment phase; however, its length can make it
burdensome for children. Computerized adaptive testing
(CAT) has been shown to effectively shorten the question-
naire while maintaining accuracy. More recently, Harrison
et al. applied a Decision Tree algorithm to integrate clinical
variables for further optimization of this process.®® While
CAT remained superior, the study highlighted the potential
of ML for future applications in polytomous data systems.

Risk prediction

Several studies have shown that the etiology of CL/P arises
from complex interactions between genetic and environ-
mental factors. Accordingly, Shafi et al. developed a
Multilayer Perceptron neural network model to predict the
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prenatal risk of CL/P.5” The model demonstrated promising
performance, achieving an accuracy of up to 92.6 %, and
identified several relevant risk factors, including family
history of CL/P, pregnancy loss, and parental smoking
habits. In the postnatal stage, another study applied lo-
gistic regression (LR) algorithms to construct a model pre-
dicting the risk of future orthognathic surgery in children
with CL/P.>® Significant prognostic factors included the
number of clefts, male sex, and the palatal closure tech-
nique. This model achieved high predictive performance,
with an AUC of 0.9.

Genetic and molecular approaches

Currently, non-invasive tests such as maternal serum analysis
have emerged as promising methods to support the early
diagnosis of CL/P. Jia et al. combined lipidomics with ML to
screen potential lipid biomarkers for CLP." In this study,
feature-selection methods combined with the robust rank
aggregation approach were applied to identify dysregulated
lipids from untargeted lipidomics. Seven classification
models were then evaluated, with Naive Bayes achieving the
highest diagnostic performance and yielding a panel of 35
candidate lipid biomarkers. These candidates were subse-
quently validated through targeted lipidomics and multi-
variate analyses, resulting in a three-lipid panel: arachidonic
acid (20:4), lysophosphatidylcholine (LPC, 18:0), and phos-
phatidylcholine (PC, 16:0e/22:0), which demonstrated
excellent  diagnostic  accuracy  (AUC 0.97,
sensitivity = 80 %, and specificity = 84 %). Importantly,
arachidonic acid (20:4) and LPC (18:0) were also significantly
downregulated in early maternal serum samples from the
CL/P group in the additional validation cohort, further sup-
porting their potential involvement in the etiopathogenesis
of CL/P. PC plays a crucial role in lipid emulsification and
metabolism and also serves as a source of lipid messengers.®®
The observed reduction in PC (16:0e/22:0) suggests dimin-
ished anti-inflammatory capacity during craniofacial devel-
opment, potentially contributing to CL/P. LPC regulates cell
function and exerts immunoregulatory effects by suppress-
ing proinflammatory cytokines and enhancing anti-
inflammatory mediators.®” Reduced LPC (18:0) may impair
these protective effects, creating a proinflammatory envi-
ronment detrimental to lip and palate formation. Moreover,
free fatty acids, particularly arachidonic acid (20:4), serve as
important regulators of antioxidant signaling, inflammation,
and neurodevelopment.®® Imbalances in polyunsaturated
fatty acids have been associated with adverse neuro-
cognitive and craniofacial outcomes.®’

Meanwhile, ML has also proven effective in assessing CLP
risk based on genetic variants, particularly single nucleo-
tide polymorphisms (SNPs). Zhang et al. validated 43 GWAS-
derived SNPs and constructed predictive models using
multiple ML algorithms and traditional risk scoring
methods.** Notably, this study demonstrated that four SNPs
located in MTHFR and RBP4 genes involved in folic acid and
vitamin A metabolism collectively contributed about 76.1 %
to the predictive ability for CL/P risk (AUC 0.761).
Zhang’s findings support that genetic diagnosis of MTHFR
and RBP4 variants using an ML approach may guide
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nutritional intervention strategies to lower the risk of CL/P,
consistent with evidence that adequate folic acid and
vitamin A supplementation during conception reduces the
likelihood of CL/P in offspring.”® In the same domain, Kang
et al. evaluated the predictive performance of a Genetic
Algorithm-optimized Neural Network Ensemble (GANNE)
against eight traditional risk classification methods. Results
indicated that GANNE could automatically select the most
relevant SNP groups, achieving an AUC of 88.2 % with a
panel of 10 SNPs.*’ In addition, the functional annotation
and protein—protein interaction (PPI) analyses showed that
IRF6, the gene most often selected by GANNE, acted as a
major hub gene, align with its key role in craniofacial
development. Other genes, including RUNX2, MTHFR,
PVRL1, TGFB3, and TBX22, were also involved in tissue
growth and tooth formation, suggesting that the selected
SNP panel has real biological meaning for predicting CL/P
risk. In addition, Gonzalez et al. developed TAGOOQS, a su-
pervised learning method that uses regulatory annotations
to prioritize non-coding SNPs. Applied to cleft lip loci,
TAGOOS confirmed known associations and also detected
new regulatory regions enriched in transcription factors
related to craniofacial development, thus providing bio-
logical insights and publicly available genome-wide scores
for further research.*? Xiao et al. applied gapped k-mer ML
to integrate GWAS data with epigenomic profiles from oral
epithelial cells, enabling the discovery of functional non-
coding variants missed by traditional analyses.* Using this
model, they prioritized sub-threshold GWAS SNPs that
overlapped active enhancers and promoters, then com-
bined 3D chromatin interaction data to link these variants
to target genes involved in palatal development. Functional
validation showed that several risk SNPs disrupted key
transcription factor motifs, such as SOX2, revealing a reg-
ulatory mechanism that contributes to cleft pathogenesis.

ML has also been applied to explore gene—gene in-
teractions in CLP development. Liu et al. used LR to iden-
tify significant interactions between ACTN1 and CTNNB1 in
the cell adhesion pathway.*' This antagonistic interaction
indicates that the joint regulation of these genes in the
adherens junction network could affect epithelial adhesion
and palatal shelf fusion, contributing to CLP pathogenesis.
Similarly, Li et al. applied ML and regression-based methods
to uncover the role of the WNT gene family in defect for-
mation.** They identified strong gene—gene interactions,
including WNT5B-MAFB and WNT5A-IRF6-C1orf107. These
findings underscore the biological significance of WNT5B as
a signaling ligand involved in tissue development and lon-
gitudinal bone growth regulation, reinforcing its potential
contribution to craniofacial morphogenesis. Dai et al.
analyzed epigenetic data using a CNN algorithm and
demonstrated that CLP-related SNPs exhibited high bio-
logical activity and dynamic changes across developmental
stages.®’ The model quantified skull-related SNP activity
and identified six high-risk variants with a clear linear
relationship to craniofacial developmental progression,
suggesting that these SNPs could play a temporal regulatory
role. Furthermore, trophoblast cells were pinpointed by
cell-type specificity analysis as having the highest enrich-
ment of orofacial cleft-related risk signals.
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Discussion

This review highlights the rapid expansion of artificial in-
telligence applications in CL/P management. The analysis
revealed that imaging diagnosis accounted for the largest
number of studies, followed by speech-language therapy
and genetic or molecular approaches, while risk prediction
and caregiver education were relatively underrepresented.
This distribution reflects both the availability of data
sources and the immediate clinical needs in CL/P care.
Imaging data such as ultrasound, panoramic radiographs,
and CBCT are abundant and routinely collected in clinical
practice, which facilitates Al model development. In
contrast, studies on caregiver education or risk prediction
require longitudinal data and patient-reported outcomes,
which are more difficult to obtain, explaining their limited
presence in literature. In addition, several review articles
provided comprehensive perspectives, further supporting
the potential of Al integration across multiple aspects of
CL/P care.

The clinical implications of these findings are consider-
able. Al-assisted imaging diagnosis has demonstrated high
sensitivity and specificity, sometimes outperforming expert
clinicians, and could shorten examination times and reduce
inter-operator variability. Similarly, Al applications in
speech-language therapy provide objective tools for
detecting hypernasality, articulation errors, and velophar-
yngeal insufficiency, offering support to speech patholo-
gists and enabling more standardized assessments. In
surgical intervention, deep learning models are beginning
to support both planning and evaluation, with generative
approaches such as CleftGAN showing promise for
addressing the shortage of clinical datasets. These ad-
vances collectively indicate that Al can reduce the work-
load of clinicians, improve diagnostic accuracy, and
enhance patient outcomes. Al-assisted intraoral scanning
and 3D model reconstruction also demonstrated promising
accuracy and cost-effectiveness, particularly for designing
preoperative orthopedic plates in low-resource settings.

At the same time, several challenges remain. First, most
Al models in CL/P are trained and validated on relatively
small, single-center datasets, which limit their generaliz-
ability across diverse populations and healthcare systems.
Second, although imaging and speech data are relatively
well represented, integration with genetic, molecular, and
environmental factors is still in its infancy, despite the
potential of such multimodal approaches to improve risk
prediction and personalized care. Third, ethical concerns,
especially those related to data privacy and potential pa-
tient re-identification, are critical issues that must be
addressed before Al can be safely implemented in routine
clinical practice.

Future directions should focus on large-scale, multi-
center collaborations to build diverse and high-quality
datasets that enable robust model validation. Efforts
should also be made to develop multimodal models that
combine imaging, genetic, molecular, and clinical data for
comprehensive patient assessment. Furthermore, clear
ethical and regulatory frameworks must be established to
ensure patient privacy, data security, and the safe
deployment of Al tools in clinical practice. To achieve these
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goals, multi-center data sharing frameworks are a practical
next step. Such frameworks allow different research cen-
ters to collaborate while safeguarding patient privacy and
data integrity. Two major strategies have emerged in this
context: centralized and federated approaches. A central-
ized approach, in which data are pooled into a single re-
pository for model training and validation, can create large,
harmonized datasets that improve generalizability. How-
ever, it requires robust governance and secure infrastruc-
ture to minimize risks related to data transfer and potential
breaches. By contrast, federated learning offers a decen-
tralized solution where models are trained locally on-site,
and only model parameters, not raw patient data, are
shared with a central server for aggregation. This approach
preserves patient privacy, mitigates regulatory barriers,
and can be particularly effective in contexts where cross-
border data sharing is challenging. Together, these strate-
gies could help overcome current barriers to data scarcity
and reproducibility, ultimately paving the way for practical
implementation in the near future.

In summary, Al is gradually reshaping how clinicians
approach the diagnosis, treatment, and care of individuals
with CLP. Al-facilitated tools not only enhance clinical ef-
ficiency but also help reduce time, effort, and costs for
patients. However, as a relatively new technology, many Al
models have not yet been fully validated, particularly in
developing countries where resources and data remain
limited. The lack of high-quality training datasets further
reduces the generalizability of these models. Ethical issues
also require careful attention, as sensitive patient data may
inadvertently compromise personal identity. Despite these
challenges, Al demonstrates strong potential due to its
ability to learn autonomously and address a wide range of
complex problems, offering an innovative strategy for CLP
management. Future research should focus on well-
designed studies to clarify the long-term benefits and lim-
itations before Al can be widely implemented in clinical
practice.
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