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Abstract According to the U.S. National Institutes of Health, cleft lip and/or palate (CL/P) is 

one of the most common congenital anomalies, significantly affecting both function and aes-

thetics while placing a considerable burden on healthcare systems worldwide. With the rapid 

advancement of artificial intelligence (AI) in various medical fields, a thorough evaluation of its 

role in CL/P management has become essential. Therefore, this review was undertaken to 

summarize recent clinical applications of AI in the diagnosis, treatment, and care of CL/P. A 

comprehensive search of PubMed and IEEE Xplore was conducted from January 1, 2015, to 

May 31, 2025, using combined keywords related to AI and CL/P. Of the 134 records initially 

identified, 51 full-text articles met the eligibility criteria and were included in the final anal-

ysis. In conclusion, AI is driving innovation in CL/P management across multiple domains; how-

ever, further evidence from diverse populations and the establishment of clear ethical 

frameworks are required to ensure its long-term clinical applicability.
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Introduction

Cleft lip and/or palate (CL/P) is one of the most common 
craniofacial anomalies, resulting from complex interactions 
between genetic and environmental factors. 1 These de-

fects primarily arise during embryonic development, when 
the medial nasal process fails to establish or maintain 
contact with the lateral nasal and maxillary processes. 2 CL/ 
P may involve the lip, the hard palate, and can extend to 
the soft palate. In some cases, the cleft also affects adja-

cent soft tissue structures of the face, leading to more 
complex orofacial clefts. 3

The prevalence of CL/P varies according to race, geog-

raphy, socioeconomic status, and cleft type. A systematic 
review conducted by Salari et al. estimated the global 
prevalence of orofacial clefts. 4 The prevalence of lip cleft 
was reported as 0.30 per 1000 live births based on 57 reviews 
including 17,907,569 participants. Palate cleft had a preva-

lence of 0.33 per 1000 live births from 59 reviews comprising 
21,088,517 participants, whereas cleft lip and palate com-

bined showed the highest prevalence at 0.45 per 1000 live 
births, derived from 55 reviews including 17,894,673 par-

ticipants. Among global populations, studies consistently 
report the highest occurrence in Asians, followed by Cau-

casians, with the lowest incidence observed in individuals of 
African descent. 5—7 In China, a meta-analysis covering the 
period 1986—2015 reported an overall incidence of orofacial 
clefts as high as 1.4 per 1000 live births. 8 In the United States, 
cleft lip with or without cleft palate ranks as the fourth most 
common congenital anomaly. 3 Recent US national data 
(2016—2020) report prevalence rates of 0.34 per 1000 for 
cleft lip, 0.62 per 1000 for cleft palate, and 0.65 per 1000 for 
combined cleft lip and palate, which are slightly higher than 
the global estimates reported above. 9 Regarding socioeco-

nomic status, family income has been identified as a poten-

tial determinant of cleft prevalence. 10 Sabbagh et al. 
reported that lower monthly family income was associated 
with a higher occurrence of orofacial clefts, whereas higher 
income was linked to a reduced prevalence. 11 CL/P signifi-

cantly impacts quality of life and imposes substantial treat-

ment costs on both families and healthcare systems. Beyond 
the aesthetic consequences, infants with CL/P frequently 
experience feeding difficulties that may impair physical 
growth. If left untreated, CL/P can severely affect speech 
development and, in some cases, lead to hearing loss or 
malocclusion. 12 According to the U.S. National Institute of 
Dental and Craniofacial Research, healthcare costs for chil-

dren aged 1—10 years with combined cleft lip and palate are 
six times higher than those for unaffected children. 13 

Consequently, comprehensive management presents 
particular challenges, especially in developing countries. 

Given the morphological diversity of CL/P, its diagnosis 
and treatment require a multidisciplinary approach tailored 
to the needs of each patient. Advances in molecular

biomedicine now provide counseling resources for couples 
prior to conception. 14 Prenatally, CL/P can often be 
detected through multiplanar ultrasound performed by 
obstetricians. 15 Before surgery, orthodontists may employ 
non-invasive appliances such as nasoalveolar molding to 
reduce craniofacial discrepancies. 16 By approximately 
three months of age, reconstructive surgery is typically 
performed, aiming not only to restore biological function 
but also to improve facial aesthetics. 17 Nevertheless, many 
patients continue to experience speech impairments, 
making early speech-language therapy essential. 18 In 
addition, maxillary growth deficiency is frequently reported 
in CL/P patients and often results in skeletal Class III 
malocclusion. 19,20 In such cases, bone grafting and orthog-

nathic surgery may be necessary to achieve stable func-

tional and aesthetic outcomes.

One of the most impressive technological advances 
today is Artificial intelligence (AI). By processing large 
volumes of medical data with complex algorithms, AI sys-

tems can learn and improve performance across various 
scenarios. 19 With its growing potential, AI has been rapidly 
applied in medicine, including CL/P care. In this field, AI 
has demonstrated its value in multiple domains, including 
imaging diagnostics, intraoral assessment, reconstructive 
surgery, and speech therapy. 15—17,20 As its role in the 
multidisciplinary management of CL/P becomes increas-

ingly evident and related advancements continue to 
emerge, this updated review was undertaken to summarize 
and synthesize the recent applications of AI in the diag-

nosis, treatment, and care of patients with CL/P.

Materials and methods

Information sources and search strategy

To address the question, “In what aspects can AI be applied 
to support the diagnosis, treatment, and care of patients 
with CLP?” we conducted a full-text review using relevant 
search terms across two databases: PubMed and IEEE. The 
following search string was entered into each database: 
(“cleft lip” OR “cleft palate” OR “cleft lip and palate” OR 
“orofacial clefts”) AND (“artificial intelligence” OR “ma-

chine learning” OR “deep learning” OR “neural networks” 
OR “convolutional neural network").

Selection criteria

The search was restricted to articles published between 
January 1, 2015, and May 31, 2025, to capture recent ap-

plications of AI. Inclusion criteria were studies directly 
related to the application of AI, machine learning (ML), or 
deep learning (DL) in the diagnosis, treatment, or care of 
CL/P. Eligible study designs included observational studies,
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model validation studies, and systematic or narrative re-

views. Only articles published in English were considered. 
Exclusion criteria were abstracts without accessible full 
texts, non-scientific materials such as book chapters, edi-

torials, announcements, letters, single case reports, or 
small case series.

Article selection and data extraction

The search protocol was developed in accordance with the 
PRISMA 2020 framework for systematic reviews and followed 
a three-step process (Fig. 1). First, potentially relevant re-

cords were retrieved using predefined inclusion criteria and 
a comprehensive search string. Duplicate articles identified 
across databases were removed prior to screening.

In the second step, two independent reviewers carefully 
assessed the titles, abstracts, and full-text availability of 
the retrieved articles to determine eligibility. In cases of 
disagreement, a third reviewer evaluated the article and 
discussed it with the initial reviewers until a consensus was 
reached. Finally, all studies that met the inclusion criteria 
were analyzed in depth to determine which main aspects of 
CL/P diagnosis, treatment, or care were supported by AI, 
and to describe how AI was applied in these contexts.

Results

From the two databases, PubMed (n � 105) and IEEE 
(n � 29), a total of 134 records were initially identified. After

the removal of five duplicates, 129 records remained for title 
and abstract screening. During the eligibility assessment, 78 
studies were excluded for the following reasons: non-

scientific materials (n � 5), inaccessible full texts 
(n � 55), and studies not related to AI, CL/P, or both (n � 18). 
Ultimately, 51 full-text articles that met all inclusion criteria 
were included in the detailed review. To provide a clearer 
overview of their scope, these studies were further analyzed 
and categorized into seven main groups based on their pri-

mary applications. Imaging diagnosis accounted for the 
largest number, with 13 studies, 15,21—32 followed by speech-

language therapy (n � 8), 18,20,33—38 genetic and molecular 
approaches (n � 8), 14,39—45 surgical intervention 
(n � 6), 17,46—50 intraoral diagnosis (n � 6), 16,51—55 risk pre-

diction (n � 2), 56,57 and caregiver education (n � 3). 58—60 In 
addition, five review articles provided a broader perspective 
by addressing multiple aspects of AI applications in CL/

P. 19,61—64

Imaging diagnosis

Multiplanar ultrasound during mid-gestation remains one of 
the most reliable and accurate methods for evaluating CL/ 
P. However, it has certain limitations, including lengthy 
examination times and dependence on operator expertise. 
To address these drawbacks, He developed CLP-Net, a 
model that automatically identifies diagnostic planes on 3D 
ultrasound images. 15 This system received highly positive 
feedback from experts and reduced examination time by

Figure 1 Flow diagram of study selection based on the PRISMA 2020 guidelines. AI: artificial intelligence; CL/P: cleft lip and/or

palate.
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15 s (31.3 %) for experienced clinicians and by 63 s (38.9 %) 
for less experienced practitioners. Another challenge in 
applying ML to CL/P ultrasound diagnosis is the limited 
availability of high-quality imaging data, which is often 
difficult to collect due to ethical concerns. To overcome 
this, Nantha et al. proposed a few-shot learning framework 
that integrates Vision Transformers with Siamese Neural 
Networks (SNNs), combining ultrasound tongue images with 
speech spectrograms. 22 By leveraging multimodal features 
from both imaging and speech data, the model achieved 
82.76 % classification accuracy across three CL/P subtypes 
and demonstrated potential for application in data-limited 
settings.

In the diagnosis of CL/P using 2D panoramic radiographs, 
Kuwada et al. introduced two DL models built on the 
DetectNet architecture. 26 Model 1 was trained on unilateral 
alveolar cleft (AC) cases, while Model 2 included both AC 
patients and healthy controls. Model 2 demonstrated lower 
false-positive rates and higher overall accuracy compared 
with both Model 1 and human observers. To further 
differentiate between unilateral and bilateral AC, the au-

thors extended their work by developing four additional 
models: Model U (unilateral AC þ controls), Model B 
(bilateral AC þ controls), Model C1 (unilateral þ bilateral 
AC þ controls), and Model C2 (similar to C1 but with 
expanded input features). 27 Diagnostic sensitivity improved 
across models, with Model C2 achieving the highest per-

formance (0.89), comparable to that of experienced 
radiologists.

In subsequent work on palate clefts (PC), two models 
were proposed: Model A, which employed DetectNet to 
identify the maxillary incisor region before classifying PC, 
and Model B, which used VGG-16 to directly analyze 
panoramic images. 25 Model A achieved the best results with 
perfect sensitivity and specificity (AUC � 0.95), out-

performing both Model B (AUC � 0.93) and radiologists 
(AUC � 0.70 and 0.63).

Early detection of anomalies such as missing, ectopic, or 
morphologically abnormal teeth is also crucial for CL/P 
treatment planning. Diagnocat, a convolutional neural 
network (CNN)-based software, was evaluated for tooth 
detection and classification in panoramic radiographs of 
CL/P patients. 21 The software demonstrated high sensi-

tivity (0.98 � 0.03) and precision (0.96 � 0.04), although 
performance varied by age group and anatomical location, 
with younger patients and the left maxillary region showing 
higher rates of false-positive and false-negative results. 

For cephalometric analysis, ML models have also been 
applied to automate landmark identification. 28 Alam and 
Alfawzan investigated dental characteristics in individuals 
with and without CL/P and found significant differences in 
eight dental variables. 30 Regarding craniofacial structures, 
individuals with CL/P exhibited significantly reduced SNA, 
ANB, and Wits appraisal values compared with the non-cleft 
group, whereas SNB showed no difference. 31 In addition, a 
higher prevalence of Sella Turcica bridging was observed in 
the CLP group. 32

More recently, 3D imaging techniques have shown 
considerable promise in assessing cleft-related defects. 
Miranda et al. developed a DL model capable of classifying 
the severity of alveolar cleft defects reconstructed from 
CBCT images, achieving high accuracy (0.823) and

sensitivity (0.816). 23 Wang et al. applied a 3D U-Net to 
automatically segment the maxilla and cleft region on CBCT 
scans and identified significant hypoplasia of the maxilla on 
the cleft side, particularly in the pyriform aperture and 
alveolar crest regions adjacent to the defect. 29 Further-

more, 3D U-Net has been used to reconstruct and autofill 
cleft defects, providing clinicians with a predictive under-

standing of how alveolar bone grafting may influence 
maxillary development. 24

Intraoral diagnosis

In clinical practice, intraoral examination plays an impor-

tant role in establishing treatment plans for children with 
CL/P. Traditional dental impressions with alginate are 
commonly used for defect analysis; however, this method 
has several drawbacks, including material deformation, 
patient discomfort, and difficulty in accurately capturing 
the dental arch morphology. The development of 3D scan-

ning technology, combined with AI support, has provided 
promising alternatives. Smartphones have been employed 
as substitutes for professional scanners to generate 3D 
surface models of intraoral structures. For example, the 
KIRI Engine application was shown to produce 3D scans with 
minimal error (approximately 0.22 mm), comparable to 
specialized scanning devices. 51 Complementing this, Lin-

gens et al. introduced a method leveraging CNN-supported 
landmark detection from single CL/P images to enable 3D 
reconstruction. 54 Although performance on real patient 
images was lower than that achieved with synthetic data, 
the findings suggest that expanding datasets could improve 
reliability. Collectively, these approaches offer strategies 
that overcome the limitations of traditional methods while 
remaining affordable in low-resource settings. In addition, 
Agaronyan et al. developed a DL model capable of auto-

matically recognizing anatomical landmarks on 3D palatal 
models of CL/P infants, achieving 94.44 % accuracy with a 
mean absolute error of 1.676 � 0.959 mm. 55 Woodsend 
et al. also introduced an automated dental landmarking 
tool that demonstrated high applicability. 53 These AI-

assisted 3D models provide a rapid and accurate means of 
designing preoperative orthopedic plates. 52 Schnabel et al. 
further emphasized that appliances fabricated with AI 
support achieved excellent fit (average error of about 
0.1 mm) and rapid design times (less than 3 min). 16

Surgical intervention

Surgical repair of CL/P is often the most critical step in 
restoring the facial structure of affected children. Typically 
performed at around three months of age, the procedure 
aims not only to restore biological function but also to 
improve facial aesthetics. 65 Sayadi et al. developed a ML 
model based on High-Resolution Net that automatically 
recognized anatomical landmarks on CL/P patient images 
and videos with a mean error of 0.029—0.055, thereby 
supporting more precise determination of surgical incision 
lines. 17 In contrast to approaches that rely on anatomical 
landmarks, Rosero et al. proposed a DL model using a SNN 
to assess lip symmetry, an important aesthetic indicator
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after surgery. This model employed a contrastive method to 
objectively compare both halves of the lip. 41

Evaluating surgical outcomes plays a critical role in 
refining techniques and improving treatment quality. 
Recently, ML has been applied to simulate facial morphology 
and predict clinical results. Hayajneh et al. presented a 
technique based on StyleGAN2 model adaptation to assess 
the extent of facial deformity. 49 This method reconstructed 
a normalized version of the patient’s face and measured the 
difference between the original and simulated images to 
calculate a deformity score, rather than relying solely on 
clinician evaluation. It provided an objective measurement 
of defects and demonstrated a strong correlation with expert 
assessments. However, a major limitation of StyleGAN 
models is their requirement for large training datasets, while 
real patient images are not always easily obtainable. More-

over, the potential for data leaks raises privacy concerns, as 
patient identities could be inadvertently revealed. To 
address these issues, Chen et al. proposed an inpainting 
model based on convolutional neural networks (CNNs) that 
reconstructs affected regions from patient images using only 
normal facial data for training, thereby ensuring data pri-

vacy. 50 Hayajneh et al. further improved the inpainting 
technique by incorporating discrepancy optimization. 46 This 
enhanced system reconstructed facial images, identified the 
location and severity of deformities, and demonstrated rapid 
processing times with strong correlation to expert opinions, 
making it a valuable tool for treatment planning and post-

operative monitoring. In addition, Hayajneh et al. intro-

duced CleftGAN, a model capable of generating synthetic 
cleft images to support ML training and validation. 47 The 
model produced facial images with cleft features derived 
from normal faces and improved realism by integrating 
available patient data. CleftGAN not only addressed the 
shortage of clinical cleft datasets but also opened new op-

portunities for developing high-quality data resources for 
research and treatment.

Speech-language therapy

Children with CL/P often present with a speech disorder 
known as hypernasality, which results from velopharyngeal 
insufficiency (VPI) and adversely affects both speech 
intelligibility and voice quality. Whisper (OpenAI) applied 
large language models to develop an algorithm for detect-

ing hypernasality from speech, achieving an accuracy of 
97 %. 33 Beyond diagnosis, the Objective Hypernasality 
Measure model was trained on normal speech data to 
quantify the severity of hypernasality and demonstrated 
strong correlation with expert evaluations (r > 0.7). 18 

Saxon et al. applied ML using a Hidden Markov Model-

Gaussian Mixture Model framework to extract acoustic 
features from speech. 37 Interestingly, although these fea-

tures were initially derived from hypernasal speech in 
Parkinson’s disease, the model was still able to identify 
hypernasality in CL/P children, despite the entirely 
different underlying mechanism of VPI.

From another perspective, Ha et al. developed a DL 
diagnostic system utilizing videofluoroscopy to detect VPI in 
CL/P patients. The results demonstrated high accuracy,

with ResNet and Xception identified as the most effective 
models for VPI diagnosis. 35 In addition to hypernasality, 
many children with CL/P also develop other speech disor-

ders, such as pharyngeal fricatives-an atypical sound pro-

duced in the pharyngeal region to compensate for the lack 
of oral pressure. Using a Decision Tree algorithm, He et al. 
proposed an acoustic analysis method to automatically 
detect pharyngeal fricatives. 20 The system achieved 
effective discrimination with an accuracy of 88—89 % and 
an overall model performance of 93 %. Another study 
introduced the Objective Articulation Measure, a frame-

work for evaluating speech production through 
consonant—vowel transition analysis. 36 This model per-

formed well for children with CL/P and showed a high 
correlation with conventional perceptual assessments.

Another investigation examined the re-identification risk 
of pathological speech, including CL/P, using a DL-based 
automatic speaker verification system. Despite atypical 
acoustic features, the system was still able to achieve 
recognition accuracy comparable to normal speech under 
certain conditions, while in other settings the re-

identification risk was even higher. 38 The authors 
concluded that voices of individuals with CL/P may serve as 
identifiable markers, thereby compromising speaker ano-

nymity. To mitigate this risk, Tayebi Arasteh et al. employed 
DL-based anonymization using the McAdams Coefficient, 
which significantly reduced speaker identifiability (by up to 
1933 %) while preserving data utility for clinical analysis. 34

Caregiver education

Caring for children with CL/P requires continuous education 
and support from both families and medical staff. Mahedia 
et al. suggested that ChatGPT could assist in postoperative 
counseling by providing responses that are not only consis-

tent with clinical guidelines but also tailored to the patient’s 
clinical status. 58 Similarly, Chaker et al. reported that 
ChatGPT reduced the time and effort needed to develop 
educational resources and was able to correctly respond to 
13 commonly asked postoperative care questions with an 
accuracy of approximately 69 % compared with expert 
responses. 59

In addition, assessing patient-reported outcomes is 
essential for optimizing care in children with CL/P. The 
CLEFT-Q is widely used to evaluate quality of life in the 
post-treatment phase; however, its length can make it 
burdensome for children. Computerized adaptive testing 
(CAT) has been shown to effectively shorten the question-

naire while maintaining accuracy. More recently, Harrison 
et al. applied a Decision Tree algorithm to integrate clinical 
variables for further optimization of this process. 60 While 
CAT remained superior, the study highlighted the potential 
of ML for future applications in polytomous data systems.

Risk prediction

Several studies have shown that the etiology of CL/P arises 
from complex interactions between genetic and environ-

mental factors. Accordingly, Shafi et al. developed a 
Multilayer Perceptron neural network model to predict the
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prenatal risk of CL/P. 57 The model demonstrated promising 
performance, achieving an accuracy of up to 92.6 %, and 
identified several relevant risk factors, including family 
history of CL/P, pregnancy loss, and parental smoking 
habits. In the postnatal stage, another study applied lo-

gistic regression (LR) algorithms to construct a model pre-

dicting the risk of future orthognathic surgery in children 
with CL/P. 56 Significant prognostic factors included the 
number of clefts, male sex, and the palatal closure tech-

nique. This model achieved high predictive performance, 
with an AUC of 0.9.

Genetic and molecular approaches

Currently, non-invasive tests such as maternal serum analysis 
have emerged as promising methods to support the early 
diagnosis of CL/P. Jia et al. combined lipidomics with ML to 
screen potential lipid biomarkers for CLP. 14 In this study, 
feature-selection methods combined with the robust rank 
aggregation approach were applied to identify dysregulated 
lipids from untargeted lipidomics. Seven classification 
models were then evaluated, with Naive Bayes achieving the 
highest diagnostic performance and yielding a panel of 35 
candidate lipid biomarkers. These candidates were subse-

quently validated through targeted lipidomics and multi-

variate analyses, resulting in a three-lipid panel: arachidonic 
acid (20:4), lysophosphatidylcholine (LPC, 18:0), and phos-

phatidylcholine (PC, 16:0e/22:0), which demonstrated 
excellent diagnostic accuracy (AUC � 0.97, 
sensitivity � 80 %, and specificity � 84 %). Importantly, 
arachidonic acid (20:4) and LPC (18:0) were also significantly 
downregulated in early maternal serum samples from the 
CL/P group in the additional validation cohort, further sup-

porting their potential involvement in the etiopathogenesis 
of CL/P. PC plays a crucial role in lipid emulsification and 
metabolism and also serves as a source of lipid messengers. 66 

The observed reduction in PC (16:0e/22:0) suggests dimin-

ished anti-inflammatory capacity during craniofacial devel-

opment, potentially contributing to CL/P. LPC regulates cell 
function and exerts immunoregulatory effects by suppress-

ing proinflammatory cytokines and enhancing anti-

inflammatory mediators. 67 Reduced LPC (18:0) may impair 
these protective effects, creating a proinflammatory envi-

ronment detrimental to lip and palate formation. Moreover, 
free fatty acids, particularly arachidonic acid (20:4), serve as 
important regulators of antioxidant signaling, inflammation, 
and neurodevelopment. 68 Imbalances in polyunsaturated 
fatty acids have been associated with adverse neuro-

cognitive and craniofacial outcomes. 69

Meanwhile, ML has also proven effective in assessing CLP 
risk based on genetic variants, particularly single nucleo-

tide polymorphisms (SNPs). Zhang et al. validated 43 GWAS-

derived SNPs and constructed predictive models using 
multiple ML algorithms and traditional risk scoring 
methods. 43 Notably, this study demonstrated that four SNPs 
located in MTHFR and RBP4 genes involved in folic acid and 
vitamin A metabolism collectively contributed about 76.1 % 
to the predictive ability for CL/P risk (AUC � 0.761). 
Zhang’s findings support that genetic diagnosis of MTHFR 
and RBP4 variants using an ML approach may guide

nutritional intervention strategies to lower the risk of CL/P, 
consistent with evidence that adequate folic acid and 
vitamin A supplementation during conception reduces the 
likelihood of CL/P in offspring. 70 In the same domain, Kang 
et al. evaluated the predictive performance of a Genetic 
Algorithm-optimized Neural Network Ensemble (GANNE) 
against eight traditional risk classification methods. Results 
indicated that GANNE could automatically select the most 
relevant SNP groups, achieving an AUC of 88.2 % with a 
panel of 10 SNPs. 40 In addition, the functional annotation 
and protein—protein interaction (PPI) analyses showed that 
IRF6, the gene most often selected by GANNE, acted as a 
major hub gene, align with its key role in craniofacial 
development. Other genes, including RUNX2, MTHFR, 
PVRL1, TGFB3, and TBX22, were also involved in tissue 
growth and tooth formation, suggesting that the selected 
SNP panel has real biological meaning for predicting CL/P 
risk. In addition, González et al. developed TAGOOS, a su-

pervised learning method that uses regulatory annotations 
to prioritize non-coding SNPs. Applied to cleft lip loci, 
TAGOOS confirmed known associations and also detected 
new regulatory regions enriched in transcription factors 
related to craniofacial development, thus providing bio-

logical insights and publicly available genome-wide scores 
for further research. 42 Xiao et al. applied gapped k-mer ML 
to integrate GWAS data with epigenomic profiles from oral 
epithelial cells, enabling the discovery of functional non-

coding variants missed by traditional analyses. 45 Using this 
model, they prioritized sub-threshold GWAS SNPs that 
overlapped active enhancers and promoters, then com-

bined 3D chromatin interaction data to link these variants 
to target genes involved in palatal development. Functional 
validation showed that several risk SNPs disrupted key 
transcription factor motifs, such as SOX2, revealing a reg-

ulatory mechanism that contributes to cleft pathogenesis.

ML has also been applied to explore gene—gene in-

teractions in CLP development. Liu et al. used LR to iden-

tify significant interactions between ACTN1 and CTNNB1 in 
the cell adhesion pathway. 41 This antagonistic interaction 
indicates that the joint regulation of these genes in the 
adherens junction network could affect epithelial adhesion 
and palatal shelf fusion, contributing to CLP pathogenesis. 
Similarly, Li et al. applied ML and regression-based methods 
to uncover the role of the WNT gene family in defect for-

mation. 44 They identified strong gene—gene interactions, 
including WNT5B-MAFB and WNT5A-IRF6-C1orf107. These 
findings underscore the biological significance of WNT5B as 
a signaling ligand involved in tissue development and lon-

gitudinal bone growth regulation, reinforcing its potential 
contribution to craniofacial morphogenesis. Dai et al. 
analyzed epigenetic data using a CNN algorithm and 
demonstrated that CLP-related SNPs exhibited high bio-

logical activity and dynamic changes across developmental 
stages. 39 The model quantified skull-related SNP activity 
and identified six high-risk variants with a clear linear 
relationship to craniofacial developmental progression, 
suggesting that these SNPs could play a temporal regulatory 
role. Furthermore, trophoblast cells were pinpointed by 
cell-type specificity analysis as having the highest enrich-

ment of orofacial cleft-related risk signals.
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Discussion

This review highlights the rapid expansion of artificial in-

telligence applications in CL/P management. The analysis 
revealed that imaging diagnosis accounted for the largest 
number of studies, followed by speech-language therapy 
and genetic or molecular approaches, while risk prediction 
and caregiver education were relatively underrepresented. 
This distribution reflects both the availability of data 
sources and the immediate clinical needs in CL/P care. 
Imaging data such as ultrasound, panoramic radiographs, 
and CBCT are abundant and routinely collected in clinical 
practice, which facilitates AI model development. In 
contrast, studies on caregiver education or risk prediction 
require longitudinal data and patient-reported outcomes, 
which are more difficult to obtain, explaining their limited 
presence in literature. In addition, several review articles 
provided comprehensive perspectives, further supporting 
the potential of AI integration across multiple aspects of 
CL/P care.

The clinical implications of these findings are consider-

able. AI-assisted imaging diagnosis has demonstrated high 
sensitivity and specificity, sometimes outperforming expert 
clinicians, and could shorten examination times and reduce 
inter-operator variability. Similarly, AI applications in 
speech-language therapy provide objective tools for 
detecting hypernasality, articulation errors, and velophar-

yngeal insufficiency, offering support to speech patholo-

gists and enabling more standardized assessments. In 
surgical intervention, deep learning models are beginning 
to support both planning and evaluation, with generative 
approaches such as CleftGAN showing promise for 
addressing the shortage of clinical datasets. These ad-

vances collectively indicate that AI can reduce the work-

load of clinicians, improve diagnostic accuracy, and 
enhance patient outcomes. AI-assisted intraoral scanning 
and 3D model reconstruction also demonstrated promising 
accuracy and cost-effectiveness, particularly for designing 
preoperative orthopedic plates in low-resource settings. 

At the same time, several challenges remain. First, most 
AI models in CL/P are trained and validated on relatively 
small, single-center datasets, which limit their generaliz-

ability across diverse populations and healthcare systems. 
Second, although imaging and speech data are relatively 
well represented, integration with genetic, molecular, and 
environmental factors is still in its infancy, despite the 
potential of such multimodal approaches to improve risk 
prediction and personalized care. Third, ethical concerns, 
especially those related to data privacy and potential pa-

tient re-identification, are critical issues that must be 
addressed before AI can be safely implemented in routine 
clinical practice.

Future directions should focus on large-scale, multi-

center collaborations to build diverse and high-quality 
datasets that enable robust model validation. Efforts 
should also be made to develop multimodal models that 
combine imaging, genetic, molecular, and clinical data for 
comprehensive patient assessment. Furthermore, clear 
ethical and regulatory frameworks must be established to 
ensure patient privacy, data security, and the safe 
deployment of AI tools in clinical practice. To achieve these

goals, multi-center data sharing frameworks are a practical 
next step. Such frameworks allow different research cen-

ters to collaborate while safeguarding patient privacy and 
data integrity. Two major strategies have emerged in this 
context: centralized and federated approaches. A central-

ized approach, in which data are pooled into a single re-

pository for model training and validation, can create large, 
harmonized datasets that improve generalizability. How-

ever, it requires robust governance and secure infrastruc-

ture to minimize risks related to data transfer and potential 
breaches. By contrast, federated learning offers a decen-

tralized solution where models are trained locally on-site, 
and only model parameters, not raw patient data, are 
shared with a central server for aggregation. This approach 
preserves patient privacy, mitigates regulatory barriers, 
and can be particularly effective in contexts where cross-

border data sharing is challenging. Together, these strate-

gies could help overcome current barriers to data scarcity 
and reproducibility, ultimately paving the way for practical 
implementation in the near future.

In summary, AI is gradually reshaping how clinicians 
approach the diagnosis, treatment, and care of individuals 
with CLP. AI-facilitated tools not only enhance clinical ef-

ficiency but also help reduce time, effort, and costs for 
patients. However, as a relatively new technology, many AI 
models have not yet been fully validated, particularly in 
developing countries where resources and data remain 
limited. The lack of high-quality training datasets further 
reduces the generalizability of these models. Ethical issues 
also require careful attention, as sensitive patient data may 
inadvertently compromise personal identity. Despite these 
challenges, AI demonstrates strong potential due to its 
ability to learn autonomously and address a wide range of 
complex problems, offering an innovative strategy for CLP 
management. Future research should focus on well-

designed studies to clarify the long-term benefits and lim-

itations before AI can be widely implemented in clinical 
practice.
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