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KEYWORDS Abstract Background: /purpose: Emerging evidence demonstrates the anti-fibrotic proper-

Oral submucous ties of metformin, a first-line anti-diabetic drug; however, its inhibitory effects on oral fibro-
fibrosis; genesis warrant further evaluation.

Myofibroblast; Materials and methods: The cytotoxic effects of metformin on normal and fibrotic buccal

Metformin; mucosal fibroblasts (fBMFs) derived from OSF tissues were evaluated using the MTT assay.

MALAT1 Collagen gel contraction, wound healing, and transwell migration assays were carried out to

assess myofibroblast features. In addition, the expression levels of alpha-1 type | collagen
(COL1A1), alpha-smooth muscle actin (a-SMA) and Smad2 were measured. Moreover, RNA
sequencing was performed to explore potential targets participating in the anti-fibrotic effects
of metformin.

Results: A lower dose of metformin was sufficient to inhibit the proliferation of fBMFs without
affecting normal BMFs, and to attenuate various myofibroblast characteristics, including
collagen gel contraction, wound healing, transwell migration capacities, and the expression
of fibrosis markers. Additionally, we showed that administration of metformin prevented the
arecoline-induced myofibroblast activation. Most importantly, our results suggest that metfor-
min may exert suppressive effects on myofibroblast activities by inhibiting ROS accumulation
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through the downregulation of MALAT1.
Conclusion: These findings indicate that metformin may serve as a preventive agent against

OSF progression.

© 2026 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Oral submucous fibrosis (OSF) has been recognized as an
oral potentially malignant disorder with a variable risk of
malignant transformation rate around 3—-5 %."? This
chronic, insidious scarring disease of the oral cavity is
characterized by the progressive inability of mouth opening
due to loss of elasticity and the development of fibrous
bands in labial and buccal tissues. Several studies have
indicated that the occurrence of OSF is attributed to areca
nut chewing.®* Stimulation of buccal mucosal fibroblasts
(BMFs) with arecoline, the main alkaloid found in the areca
nut, has been demonstrated to activate transforming
growth factor (TGF)-B/Smads signaling and induce myofi-
broblast transdifferentiation.>® Aside from the activation
of the TGF-B/Smads pathway, the arecoline-induced reac-
tive oxygen species (ROS) accumulation confers myofibro-
blast transdifferentiation and oral fibrogenesis as well.’
Metformin, commonly prescribed as a first-line anti-dia-
betic agent, has demonstrated efficacy in reversing pul-
monary fibrosis in various studies with its capacity to inhibit
TGF-B1, collagen formation, ROS generation, and myofi-
broblast activation.® '° Nevertheless, its inhibitory effect
on the development of OSF has yet to be determined.

Numerous studies have highlighted the critical roles of
noncoding RNAs in various diseases, including OSF.'" "2
Among them, the long noncoding RNA MALAT1 (metastasis
associated lung adenocarcinoma transcript 1) has been
shown to contribute to the development and progression of
oral cancer'> " and can serve as a salivary biomarker of
oral cancer.'® In fibrosis diseases, MALAT1 has been found
to induce the TGF-B1/Smads-mediated fibrosis during the
acute kidney injury to chronic kidney disease transition.'’
Besides, silencing of MALAT1 significantly reduced the
expression levels of fibrosis-related proteins in renal
interstitial fibrosis.'® MALAT1 not only drives mouse fibro-
blast activation,'® but also possess the capacity to regulate
ROS production.?®?" While MALAT1 is known to be overex-
pressed in oral cancer tissues compared to normal oral
mucosa,'> ' it remains unclear whether its aberrant upre-
gulation also occurs in precancerous OSF lesions and con-
tributes to disease progression. Notably, MALAT1 has been
implicated in the therapeutic effects of metformin in
breast and cervical cancers,”>?> and whether metformin
regulates MALAT1 to influence OSF development warrants
further investigation.

As such, we aimed to investigate the effect of metformin
on myofibroblast activities of fibrotic BMFs (fBMFs) derived
from OSF tissues and myofibroblast transdifferentiation of
BMFs stimulated with arecoline. Moreover, we examined
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the expression of MALAT1 to show if the metformin-
mediated regulation of MALAT1 contributes to the treat-
ment of oral fibrogenesis.

Materials and methods

Reagents

Arecoline and collagen solution from bovine skin were
purchased from Sigma—Aldrich (St. Louis, MO, USA).

Primary BMFs and fBMFs culture

All procedures for tissue acquisition adhered to the Decla-
ration of Helsinki and were reviewed and approved by the
Institutional Review Committee of Chung Shan Medical
University. The isolation and culture of normal buccal
mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs) from
OSF tissues were conducted as previously described. Cells
between the third and eighth passages were used for all
experiments to ensure phenotypic consistency. "’

Cell proliferation and survival assay

Cells were seeded into 96-well plates at a density of
1 x 10* cells per well and incubated overnight to allow
adhesion. Cells were then treated with metformin at con-
centrations of 10, 20, 40, 80, and 160 uM for 48 h. After
treatment, the proliferation rate and IC50 value were
assessed using the MTT assay, following the manufacturer’s
instructions (Sigma—Aldrich). Absorbance at 570 nm was
measured with a microplate reader (Molecular Devices, San
Jose, CA, USA).

Collagen gel contraction assay

Cells were suspended in collagen gel solution (Sigma-
—Aldrich) and seeded into a 24-well plate, followed by in-
cubation at 37 °C for 2 h to allow gel polymerization.
Subsequently, 0.5 mL of medium was added, and gels were
cultured for 48 h. The gel surface area was analyzed using
ImageJ software (NIH, Bethesda, MD, USA), and contraction
was quantified relative to initial area.”*

Transwell migration assays
A total of 1 x 10° cells in medium with low serum were

placed in the upper chamber of transwell inserts with 8 pm
pores (Corning, Acton, MA, USA). The lower chamber was
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filled with medium containing higher serum. After 24 h,
cells that migrated to the underside of the membrane were
stained with crystal violet and counted in five randomly
selected fields.?

Wound healing assay

Cells were grown to approximately 80 % confluence in 12-
well plates. A linear scratch was created using a sterile
200 pL pipette tip, and cells were cultured for another 48 h
in serum-containing medium. Crystal violet staining was
used to visualize the migration of cells into the wound area
at 0 and 24 h under a microscope.?®

Western blot analysis

Total protein extraction, SDS-PAGE, and immunoblotting
were performed using standard protocols. Primary anti-
bodies included «-SMA, COL1A1, phosphorylated Smad2 (p-
Smad2), and total Smad2. GAPDH was used as a loading
control.™

Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from cells using TRIzol reagent
(Invitrogen Life Technologies, Carlsbad, CA, USA) following
the manufacturer’s protocol. First-strand cDNA was syn-
thesized using the SuperScript Il first-strand synthesis sys-
tem (Invitrogen Life Technologies), and quantitative PCR
was performed on an ABI StepOne™ Real-Time PCR System
(Applied Biosystems, Waltham, MA, USA) using the following
primers: MALAT1, GCCTGGAAGCTGAAAAACGG (forward)
and TGGAAAACGCCTCAATCCCA (reverse); GAPDH (internal
control), CTCATGACCACAGTCCATGC (forward), TTCAGCTC
TGGGATGACCTT (reverse). Relative gene expression levels
were calculated using the 2-ACt method.

Silencing MALAT1

Lentiviral vectors encoding short hairpin RNAs (shRNAs)
targeting MALAT1 were constructed using the pLV-RNAi
plasmid (Biosettia, San Diego, CA, USA), following the
manufacturer’s protocol. Synthetic oligonucleotides were
cloned into the vector to generate lentiviral particles for
cell transduction.

Overexpression of MALAT1

MALAT1 cDNA was cloned into the lentiviral vector pLV-
EF1a-MCS-IRES-Puro (BioSettia, Cat. No: cDNA-pLVO1).
Lentiviral particles were produced by co-transfecting the
expression vector along with helper plasmids (VSVG and
Gag-Pol) into 293T cells (American Type Culture Collection,
Manassas, VA, USA) using Lipofectamine 2000 (Invitrogen).

Intracellular reactive oxygen species (ROS) level
assessment

The intracellular levels of reactive oxygen species (ROS)
were measured using 2',7'-dichlorodihydrofluorescein
diacetate (DCFH-DA) assay (Sigma—Aldrich). BMFs and
fBMFs were seeded and treated with or without metformin
at the indicated concentrations for 48 h. In some experi-
ments, fBMFs were transduced with lentiviral constructs
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expressing either MALAT1 shRNA or MALAT1 cDNA prior to
metformin treatment to examine the role of MALAT1 in ROS
regulation. After treatment, 1 x 10° cells were collected,
resuspended in serum-free medium containing 10 uM DCFH-
DA, and incubated at 37 °C for 60 min in the dark. Following
two washes with phosphate-buffered saline (PBS), the
fluorescence intensity of 10,000 cells was recorded using a
FACSCalibur flow cytometer (Becton Dickinson, San Diego,
CA, USA) and analyzed using FlowJo software.?”

Statistical analysis

All data were expressed as mean + SD. Student’s t-test or
one-way analysis of variance (ANOVA) was used to compare
differences between groups. A P-value less than 0.05 was
considered statistically significant.

Results

To explore the potential role of metformin in suppressing
myofibroblast proliferation, we assessed the cytotoxic ef-
fect of metformin on normal BMFs and fBMFs derived from
OSF tissues with various concentrations of metformin using
an MTT assay. As shown in Fig. 1, metformin exhibited a
dose-dependent inhibition on cell survival in both BMFs and
fBMFs, and the ICsg values for metformin in BMFs and fBMFs
were 51.3 4+ 8.6 and 22.6 + 2.2 uM, respectively. A lower
concentration of metformin was sufficient to reduce the
viability of fBMFs, with minimal effects on normal BMFs.
Hence, the lower concentrations of metformin (0—20 puM)
were used in the following experiments to determine the
anti-fibrosis effect of metformin.

Under conditions of tissue injury or in response to
certain signals, fibroblasts acquire reparative features to
stabilize and close wounds by producing a collagen-rich
extracellular matrix (ECM) during a phenotypic switch
known as fibroblast-to-myofibroblast activation. Apart from
the expression of a-smooth muscle actin (a-SMA), the
increased collagen contraction and migration capacities are
also the hallmarks of mature myofibroblasts.?®"?° In Fig. 2,
we showed that treatment of metformin markedly miti-
gated the collagen gel contractility (Fig. 2A), wound healing
capacity (Fig. 2B), and transwell migration ability (Fig. 2C)
in a dose-dependent manner. Besides, the expression levels
of fibrosis-associated markers, such as alpha-1 type |
collagen (COL1A1), alpha-smooth muscle actin («-SMA), and
phosphorylated Smad2 were all downregulated in response
to metformin. Furthermore, we demonstrated that met-
formin administration attenuated the arecoline-induced
myofibroblast activation in BMFs (Fig. 3A and B). These
results indicate that metformin treatment may ameliorate
the areca nut-associated oral fibrogenesis.

To elucidate the mechanism underlying the anti-fibrotic
effects of metformin, RNA sequencing was performed to
identify targets involved in metformin-mediated inhibition
of myofibroblast activation. As shown in Fig. 4A; MALAT1 is
differentially expressed long noncoding RNAs in the
metformin-treated fBMFs. To validate the RNA-sequencing
results, gqRT-PCR was conducted and we found that the
expression of MALAT1 was downregulated in fBMFs treated
with metformin in a dose-dependent fashion (Fig. 4B).
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MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was utilized to evaluate cell survival/proliferation in
response to various concentrations of metformin. The half-maximal inhibitory concentration (ICso) values were calculated by GraFit
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Effects of metformin on myofibroblast characteristics in fBMFs. The fBMFs were subjected to collagen gel contraction

(A), wound healing (B), and transwell migration (C) assays. Collagen gel contraction and migration were assessed 48 h after
metformin treatment. The expression levels of alpha-1 type | collagen (COL1A1), alpha-smooth muscle actin («-SMA), and both
phosphorylated and total Smad2 were analyzed. All experiments were independently repeated three times, and representative
results are shown. Data are presented as mean + SD. *P < 0.05 compared to the untreated control group.

Furthermore, we showed that the suppressive effect of
metformin on ROS production was mediated by diminishing
MALAT1 (Fig. 5). Collectively, our findings suggest that
metformin may diminish myofibroblast activation by
reducing ROS accumulation through the downregulation of
MALAT1.

Discussion

Metformin, a prototypical biguanide compound, has long
been employed in the management of diabetes mellitus.
Besides glucose control, metformin also offers multifaceted
benefits that can mitigate inflammation and oxidative
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stress. Beyond its conventional use, metformin has
garnered increasing attention for its therapeutic potential
in lowering cancer risk and improving clinical outcomes in
cancer patients. Several studies have demonstrated the
anti-cancer effects of metformin against head and neck/
oral squamous carcinoma cells.*°* It may also serve as an
adjuvant drug for oral cancer due to its synergistic effects
with cisplatin and its radiosensitizing properties.3%33
Moreover, there is growing enthusiasm for the use of met-
formin in mitigating pathological fibrosis, including
pulmonary,®~'° ovarian,** and liver*®> fibrosis. Extensive
studies underpin this paradigm shift by demonstrating the
ability of metformin to inhibit key fibrotic and stress-
related pathways, including AMPK activation, TGF-B1
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Figure 3  Suppressive effect of metformin on arecoline-induced myofibroblast activation (A) Collagen gel contraction and (B)
transwell migration assays were performed following arecoline stimulation to assess myofibroblast transdifferentiation in the
absence or presence of metformin. All experiments were independently repeated three times, and representative results are
shown. Data are presented as mean =+ SD. *P < 0.05 compared to the untreated control group. #P < 0.05 compared to the arecoline-
only group.
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Figure 4 Metformin treatment downregulates the expression of MALAT1. (A) A heatmap showing that MALAT1 is differentially
expressed genes in fBMFs treated with or without metformin. (B) The expression level of MALAT1 in two fBMF lines was dose-
dependently diminished in response to metformin treatment. Data are presented as mean + SD. *P < 0.05 compared to the un-
treated control group.

signaling, collagen synthesis, ROS generation, and myofi- overexpressed in oral cancer tissues*>*' and is implicated
broblast activation.®'%3® One of the previous studies has  in its development through various mechanisms, including
shown that metformin prevents the development of oral the maintenance of epithelial-mesenchymal transi-
cancer from carcinogen (4NQO)-induced premalignant le-  tion,"'* inhibition of apoptosis," and functioning as a

sions.>” Another study demonstrated that both the clinical ~ competing endogenous RNA (ceRNA).">*" A number of
and histological findings provide encouraging evidence studies have shown that the regulation of MALAT1 is critical
supporting the potential chemopreventive role of metfor- for the therapeutic effects of metformin in the treatment
min in individuals with oral premalignant lesions.?® In line  of cervical and breast cancers.?>?* In agreement with these
with these findings, we also demonstrated that metformin findings, we demonstrated that metformin downregulated
may ameliorate the progression of premalignant OSF, as the expression of MALAT1 in fBMFs. It has been found that
evidenced by the suppression of myofibroblast features in MALAT1 regulated the TGF-B1/Smad-mediated fibrosis in
fBMFs and the inhibition of arecoline-induced myofibroblast various diseases, such as chronic kidney disease'” or dia-
activation in BMFs, possibly through the downregulation of betic cardiomyopathy.”> MALAT1 has also been shown to
MALAT1. drive myofibroblast activation by acting as a ceRNA for miR-

MALAT1, also known as LINCO0047 or NEAT2, is a long  335—3p,'’ regulating CXCL5 expression,* or promoting the
noncoding RNA of more than 8000 nucleotides, expressed TGF-B signaling pathway.** In our results, metformin
from chromosome 11q13.3° MALAT-1 was first identified in treatment reduced the expression of phosphorylated
2003 and found to be associated with metastasis in non- Smad2, collagen, and the myofibroblast marker o-SMA in
small cell lung cancer, from which its name is derived.*’ fBMFs. This effect may be linked to MALAT1 suppression.
Multiple studies have demonstrated that MALAT1 is Furthermore, we demonstrated that a reduction of MALAT1
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Overexpression of MALAT1 counteracts the metformin-induced reduction in ROS production in fBMFs. Intracellular

reactive oxygen species (ROS) levels were measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay to
investigate whether MALAT1 suppression is required for metformin-induced downregulation of ROS generation. All experiments
were independently repeated three times, and representative results are shown. Data are presented as mean + SD. *P < 0.05
compared to the untreated control group. #P < 0.05 compared to the metformin-only group.

was required for the inhibition of ROS accumulation
following metformin treatment. It has been known that
arecoline-elicited ROS may contribute to the TGF-B acti-
vation in BMFs.*®> Therefore, it is reasonable to infer that
the metformin-induced reduction in ROS levels is one of the
contributing factors to the decreased expression of myofi-
broblast markers and reduced activation of the TGF-B
signaling pathway. Further investigations are needed to
explore whether MALAT1 may also influence myofibroblast
activation or the TGF-B pathway through mechanisms
beyond ROS regulation.

Taken together, this study demonstrates that metformin
holds the potential to prevent the exacerbation of OSF by
regulating MALAT1, thereby reducing ROS production and
the subsequent persistent activation of myofibroblasts.
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