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Metformin alleviates the progression of oral 
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of metastasis associated lung 
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Abstract Background: /purpose: Emerging evidence demonstrates the anti-fibrotic proper-

ties of metformin, a first-line anti-diabetic drug; however, its inhibitory effects on oral fibro-

genesis warrant further evaluation.

Materials and methods: The cytotoxic effects of metformin on normal and fibrotic buccal 

mucosal fibroblasts (fBMFs) derived from OSF tissues were evaluated using the MTT assay. 

Collagen gel contraction, wound healing, and transwell migration assays were carried out to 

assess myofibroblast features. In addition, the expression levels of alpha-1 type I collagen 

(COL1A1), alpha-smooth muscle actin (α-SMA) and Smad2 were measured. Moreover, RNA 

sequencing was performed to explore potential targets participating in the anti-fibrotic effects 

of metformin.

Results: A lower dose of metformin was sufficient to inhibit the proliferation of fBMFs without 

affecting normal BMFs, and to attenuate various myofibroblast characteristics, including 

collagen gel contraction, wound healing, transwell migration capacities, and the expression 

of fibrosis markers. Additionally, we showed that administration of metformin prevented the 

arecoline-induced myofibroblast activation. Most importantly, our results suggest that metfor-

min may exert suppressive effects on myofibroblast activities by inhibiting ROS accumulation
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through the downregulation of MALAT1.

Conclusion: These findings indicate that metformin may serve as a preventive agent against 

OSF progression.

© 2026 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier 

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons. 

org/licenses/by-nc-nd/4.0/).

Introduction

Oral submucous fibrosis (OSF) has been recognized as an 
oral potentially malignant disorder with a variable risk of 
malignant transformation rate around 3—5 %. 1,2 This 
chronic, insidious scarring disease of the oral cavity is 
characterized by the progressive inability of mouth opening 
due to loss of elasticity and the development of fibrous 
bands in labial and buccal tissues. Several studies have 
indicated that the occurrence of OSF is attributed to areca 
nut chewing. 3,4 Stimulation of buccal mucosal fibroblasts 
(BMFs) with arecoline, the main alkaloid found in the areca 
nut, has been demonstrated to activate transforming 
growth factor (TGF)-β/Smads signaling and induce myofi-

broblast transdifferentiation. 5,6 Aside from the activation 
of the TGF-β/Smads pathway, the arecoline-induced reac-

tive oxygen species (ROS) accumulation confers myofibro-

blast transdifferentiation and oral fibrogenesis as well. 7 

Metformin, commonly prescribed as a first-line anti-dia-

betic agent, has demonstrated efficacy in reversing pul-

monary fibrosis in various studies with its capacity to inhibit 
TGF-β1, collagen formation, ROS generation, and myofi-

broblast activation. 8—10 Nevertheless, its inhibitory effect 
on the development of OSF has yet to be determined. 

Numerous studies have highlighted the critical roles of 
noncoding RNAs in various diseases, including OSF. 11,12 

Among them, the long noncoding RNA MALAT1 (metastasis 
associated lung adenocarcinoma transcript 1) has been 
shown to contribute to the development and progression of 
oral cancer 13—15 and can serve as a salivary biomarker of 
oral cancer. 16 In fibrosis diseases, MALAT1 has been found 
to induce the TGF-β1/Smads-mediated fibrosis during the 
acute kidney injury to chronic kidney disease transition. 17 

Besides, silencing of MALAT1 significantly reduced the 
expression levels of fibrosis-related proteins in renal 
interstitial fibrosis. 18 MALAT1 not only drives mouse fibro-

blast activation, 19 but also possess the capacity to regulate 
ROS production. 20,21 While MALAT1 is known to be overex-

pressed in oral cancer tissues compared to normal oral 
mucosa, 13,14 it remains unclear whether its aberrant upre-

gulation also occurs in precancerous OSF lesions and con-

tributes to disease progression. Notably, MALAT1 has been 
implicated in the therapeutic effects of metformin in 
breast and cervical cancers, 22,23 and whether metformin 
regulates MALAT1 to influence OSF development warrants 
further investigation.

As such, we aimed to investigate the effect of metformin 
on myofibroblast activities of fibrotic BMFs (fBMFs) derived 
from OSF tissues and myofibroblast transdifferentiation of 
BMFs stimulated with arecoline. Moreover, we examined

the expression of MALAT1 to show if the metformin-

mediated regulation of MALAT1 contributes to the treat-

ment of oral fibrogenesis.

Materials and methods

Reagents

Arecoline and collagen solution from bovine skin were 
purchased from Sigma—Aldrich (St. Louis, MO, USA).

Primary BMFs and fBMFs culture

All procedures for tissue acquisition adhered to the Decla-

ration of Helsinki and were reviewed and approved by the 
Institutional Review Committee of Chung Shan Medical 
University. The isolation and culture of normal buccal 
mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs) from 
OSF tissues were conducted as previously described. Cells 
between the third and eighth passages were used for all 
experiments to ensure phenotypic consistency. 11

Cell proliferation and survival assay

Cells were seeded into 96-well plates at a density of 
1 � 10 4 cells per well and incubated overnight to allow 
adhesion. Cells were then treated with metformin at con-

centrations of 10, 20, 40, 80, and 160 μM for 48 h. After 
treatment, the proliferation rate and IC50 value were 
assessed using the MTT assay, following the manufacturer’s 
instructions (Sigma—Aldrich). Absorbance at 570 nm was 
measured with a microplate reader (Molecular Devices, San 
Jose, CA, USA).

Collagen gel contraction assay

Cells were suspended in collagen gel solution (Sigma-

—Aldrich) and seeded into a 24-well plate, followed by in-

cubation at 37 � C for 2 h to allow gel polymerization. 
Subsequently, 0.5 mL of medium was added, and gels were 
cultured for 48 h. The gel surface area was analyzed using 
ImageJ software (NIH, Bethesda, MD, USA), and contraction 
was quantified relative to initial area. 24

Transwell migration assays

A total of 1 � 10 5 cells in medium with low serum were 
placed in the upper chamber of transwell inserts with 8 μm 
pores (Corning, Acton, MA, USA). The lower chamber was
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filled with medium containing higher serum. After 24 h, 
cells that migrated to the underside of the membrane were 
stained with crystal violet and counted in five randomly 
selected fields. 25

Wound healing assay

Cells were grown to approximately 80 % confluence in 12-

well plates. A linear scratch was created using a sterile 
200 μL pipette tip, and cells were cultured for another 48 h 
in serum-containing medium. Crystal violet staining was 
used to visualize the migration of cells into the wound area 
at 0 and 24 h under a microscope. 26

Western blot analysis

Total protein extraction, SDS-PAGE, and immunoblotting 
were performed using standard protocols. Primary anti-

bodies included α-SMA, COL1A1, phosphorylated Smad2 (p-

Smad2), and total Smad2. GAPDH was used as a loading 
control. 11

Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated from cells using TRIzol reagent 
(Invitrogen Life Technologies, Carlsbad, CA, USA) following 
the manufacturer’s protocol. First-strand cDNA was syn-

thesized using the SuperScript III first-strand synthesis sys-

tem (Invitrogen Life Technologies), and quantitative PCR 
was performed on an ABI StepOne™ Real-Time PCR System 
(Applied Biosystems, Waltham, MA, USA) using the following 
primers: MALAT1, GCCTGGAAGCTGAAAAACGG (forward) 
and TGGAAAACGCCTCAATCCCA (reverse); GAPDH (internal 
control), CTCATGACCACAGTCCATGC (forward), TTCAGCTC 
TGGGATGACCTT (reverse). Relative gene expression levels 
were calculated using the 2̂-ΔCt method.

Silencing MALAT1

Lentiviral vectors encoding short hairpin RNAs (shRNAs) 
targeting MALAT1 were constructed using the pLV-RNAi 
plasmid (Biosettia, San Diego, CA, USA), following the 
manufacturer’s protocol. Synthetic oligonucleotides were 
cloned into the vector to generate lentiviral particles for 
cell transduction.

Overexpression of MALAT1

MALAT1 cDNA was cloned into the lentiviral vector pLV-

EF1a-MCS-IRES-Puro (BioSettia, Cat. No: cDNA-pLV01). 
Lentiviral particles were produced by co-transfecting the 
expression vector along with helper plasmids (VSVG and 
Gag-Pol) into 293T cells (American Type Culture Collection, 
Manassas, VA, USA) using Lipofectamine 2000 (Invitrogen).

Intracellular reactive oxygen species (ROS) level 
assessment

The intracellular levels of reactive oxygen species (ROS) 
were measured using 2 0 ,7 0 -dichlorodihydrofluorescein 
diacetate (DCFH-DA) assay (Sigma—Aldrich). BMFs and 
fBMFs were seeded and treated with or without metformin 
at the indicated concentrations for 48 h. In some experi-

ments, fBMFs were transduced with lentiviral constructs

expressing either MALAT1 shRNA or MALAT1 cDNA prior to 
metformin treatment to examine the role of MALAT1 in ROS 
regulation. After treatment, 1 � 10 5 cells were collected, 
resuspended in serum-free medium containing 10 μM DCFH-

DA, and incubated at 37 � C for 60 min in the dark. Following 
two washes with phosphate-buffered saline (PBS), the 
fluorescence intensity of 10,000 cells was recorded using a 
FACSCalibur flow cytometer (Becton Dickinson, San Diego, 
CA, USA) and analyzed using FlowJo software. 27

Statistical analysis

All data were expressed as mean � SD. Student’s t-test or 
one-way analysis of variance (ANOVA) was used to compare 
differences between groups. A P-value less than 0.05 was 
considered statistically significant.

Results

To explore the potential role of metformin in suppressing 
myofibroblast proliferation, we assessed the cytotoxic ef-

fect of metformin on normal BMFs and fBMFs derived from 
OSF tissues with various concentrations of metformin using 
an MTT assay. As shown in Fig. 1, metformin exhibited a 
dose-dependent inhibition on cell survival in both BMFs and 
fBMFs, and the IC 50 values for metformin in BMFs and fBMFs 
were 51.3 � 8.6 and 22.6 � 2.2 μM, respectively. A lower 
concentration of metformin was sufficient to reduce the 
viability of fBMFs, with minimal effects on normal BMFs. 
Hence, the lower concentrations of metformin (0—20 μM) 
were used in the following experiments to determine the 
anti-fibrosis effect of metformin.

Under conditions of tissue injury or in response to 
certain signals, fibroblasts acquire reparative features to 
stabilize and close wounds by producing a collagen-rich 
extracellular matrix (ECM) during a phenotypic switch 
known as fibroblast-to-myofibroblast activation. Apart from 
the expression of α-smooth muscle actin (α-SMA), the 
increased collagen contraction and migration capacities are 
also the hallmarks of mature myofibroblasts. 28,29 In Fig. 2, 
we showed that treatment of metformin markedly miti-

gated the collagen gel contractility (Fig. 2A), wound healing 
capacity (Fig. 2B), and transwell migration ability (Fig. 2C) 
in a dose-dependent manner. Besides, the expression levels 
of fibrosis-associated markers, such as alpha-1 type I 
collagen (COL1A1), alpha-smooth muscle actin (α-SMA), and 
phosphorylated Smad2 were all downregulated in response 
to metformin. Furthermore, we demonstrated that met-

formin administration attenuated the arecoline-induced 
myofibroblast activation in BMFs (Fig. 3A and B). These 
results indicate that metformin treatment may ameliorate 
the areca nut-associated oral fibrogenesis.

To elucidate the mechanism underlying the anti-fibrotic 
effects of metformin, RNA sequencing was performed to 
identify targets involved in metformin-mediated inhibition 
of myofibroblast activation. As shown in Fig. 4A, MALAT1 is 
differentially expressed long noncoding RNAs in the 
metformin-treated fBMFs. To validate the RNA-sequencing 
results, qRT-PCR was conducted and we found that the 
expression of MALAT1 was downregulated in fBMFs treated 
with metformin in a dose-dependent fashion (Fig. 4B).
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Furthermore, we showed that the suppressive effect of 
metformin on ROS production was mediated by diminishing 
MALAT1 (Fig. 5). Collectively, our findings suggest that 
metformin may diminish myofibroblast activation by 
reducing ROS accumulation through the downregulation of 
MALAT1.

Discussion

Metformin, a prototypical biguanide compound, has long 
been employed in the management of diabetes mellitus. 
Besides glucose control, metformin also offers multifaceted 
benefits that can mitigate inflammation and oxidative

stress. Beyond its conventional use, metformin has 
garnered increasing attention for its therapeutic potential 
in lowering cancer risk and improving clinical outcomes in 
cancer patients. Several studies have demonstrated the 
anti-cancer effects of metformin against head and neck/ 
oral squamous carcinoma cells. 30—33 It may also serve as an 
adjuvant drug for oral cancer due to its synergistic effects 
with cisplatin and its radiosensitizing properties. 30,33 

Moreover, there is growing enthusiasm for the use of met-

formin in mitigating pathological fibrosis, including 
pulmonary, 8—10 ovarian, 34 and liver 35 fibrosis. Extensive 
studies underpin this paradigm shift by demonstrating the 
ability of metformin to inhibit key fibrotic and stress-

related pathways, including AMPK activation, TGF-β1

Figure 1 Cytotoxic effect of metformin on the cell viability of buccal mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs) An 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was utilized to evaluate cell survival/proliferation in 

response to various concentrations of metformin. The half-maximal inhibitory concentration (IC 50 ) values were calculated by GraFit 

software.

Figure 2 Effects of metformin on myofibroblast characteristics in fBMFs. The fBMFs were subjected to collagen gel contraction

(A), wound healing (B), and transwell migration (C) assays. Collagen gel contraction and migration were assessed 48 h after 

metformin treatment. The expression levels of alpha-1 type I collagen (COL1A1), alpha-smooth muscle actin (α-SMA), and both 

phosphorylated and total Smad2 were analyzed. All experiments were independently repeated three times, and representative 

results are shown. Data are presented as mean � SD. *P < 0.05 compared to the untreated control group.
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signaling, collagen synthesis, ROS generation, and myofi-

broblast activation. 8—10,36 One of the previous studies has 
shown that metformin prevents the development of oral 
cancer from carcinogen (4NQO)-induced premalignant le-

sions. 37 Another study demonstrated that both the clinical 
and histological findings provide encouraging evidence 
supporting the potential chemopreventive role of metfor-

min in individuals with oral premalignant lesions. 38 In line 
with these findings, we also demonstrated that metformin 
may ameliorate the progression of premalignant OSF, as 
evidenced by the suppression of myofibroblast features in 
fBMFs and the inhibition of arecoline-induced myofibroblast 
activation in BMFs, possibly through the downregulation of 
MALAT1.

MALAT1, also known as LINC00047 or NEAT2, is a long 
noncoding RNA of more than 8000 nucleotides, expressed 
from chromosome 11q13. 39 MALAT-1 was first identified in 
2003 and found to be associated with metastasis in non-

small cell lung cancer, from which its name is derived. 39 

Multiple studies have demonstrated that MALAT1 is

overexpressed in oral cancer tissues 40,41 and is implicated 
in its development through various mechanisms, including 
the maintenance of epithelial—mesenchymal transi-

tion, 13,14 inhibition of apoptosis, 14 and functioning as a 
competing endogenous RNA (ceRNA). 15,41 A number of 
studies have shown that the regulation of MALAT1 is critical 
for the therapeutic effects of metformin in the treatment 
of cervical and breast cancers. 22,23 In agreement with these 
findings, we demonstrated that metformin downregulated 
the expression of MALAT1 in fBMFs. It has been found that 
MALAT1 regulated the TGF-β1/Smad-mediated fibrosis in 
various diseases, such as chronic kidney disease 17 or dia-

betic cardiomyopathy. 42 MALAT1 has also been shown to 
drive myofibroblast activation by acting as a ceRNA for miR-

335—3p, 19 regulating CXCL5 expression, 43 or promoting the 
TGF-β signaling pathway. 44 In our results, metformin 
treatment reduced the expression of phosphorylated 
Smad2, collagen, and the myofibroblast marker α-SMA in 
fBMFs. This effect may be linked to MALAT1 suppression. 
Furthermore, we demonstrated that a reduction of MALAT1

Figure 3 Suppressive effect of metformin on arecoline-induced myofibroblast activation (A) Collagen gel contraction and (B) 

transwell migration assays were performed following arecoline stimulation to assess myofibroblast transdifferentiation in the 

absence or presence of metformin. All experiments were independently repeated three times, and representative results are 

shown. Data are presented as mean � SD. *P < 0.05 compared to the untreated control group. #P < 0.05 compared to the arecoline-

only group.

Figure 4 Metformin treatment downregulates the expression of MALAT1. (A) A heatmap showing that MALAT1 is differentially

expressed genes in fBMFs treated with or without metformin. (B) The expression level of MALAT1 in two fBMF lines was dose-

dependently diminished in response to metformin treatment. Data are presented as mean � SD. *P < 0.05 compared to the un-

treated control group.
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was required for the inhibition of ROS accumulation 
following metformin treatment. It has been known that 
arecoline-elicited ROS may contribute to the TGF-β acti-

vation in BMFs. 45 Therefore, it is reasonable to infer that 
the metformin-induced reduction in ROS levels is one of the 
contributing factors to the decreased expression of myofi-

broblast markers and reduced activation of the TGF-β 
signaling pathway. Further investigations are needed to 
explore whether MALAT1 may also influence myofibroblast 
activation or the TGF-β pathway through mechanisms 
beyond ROS regulation.

Taken together, this study demonstrates that metformin 
holds the potential to prevent the exacerbation of OSF by 
regulating MALAT1, thereby reducing ROS production and 
the subsequent persistent activation of myofibroblasts.
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