



## Correspondence

# Exploring existing methods for calculating dental arch form and curvature



## KEYWORDS

Orthodontics;  
Artificial intelligence;  
Dental arch;  
Dental technician;  
Curvature

The rapid advancement of artificial intelligence technologies has progressively expanded into applications in dental medicine. In clinical dentistry, numerous prosthodontics-related software platforms have already integrated artificial intelligence technologies.<sup>1</sup> Currently, the morphology, arrangement, and occlusal function of dental prostheses are established based on the curvature of the maxillary and mandibular arches. Moreover, from traditional orthodontic treatments to modern digital workflows, the dental arch curve has consistently served as one of the key references in treatment planning. Accordingly, obtaining an accurate dental arch curve remains a critical challenge for the integration of artificial intelligence into clinical dentistry. The present study aimed to examine previously reported methods for calculating dental arch curves, thereby offering algorithmic references to support the future development of artificial intelligence models (Table 1).

In 1975, Pepe proposed the use of polynomial equations to measure dental arch curves.<sup>2</sup> To evaluate the accuracy of polynomial and catenary curve-fitting models, and to assess the validity of the common line of occlusion concept. Researchers calculated coefficients and mean square errors (MSE) for second, fourth, and sixth-degree polynomials, restricting the degree to eight or fewer to avoid oscillations and numerical errors. Results showed that sixth-degree polynomials generally achieved better fitting accuracy than fourth-degree polynomials, with notable reductions in MSE in certain arches. In 1998, Braun et al. studied the correlation between dental arch curve data and the

mathematical dental arch curve represented by the  $\beta$  function.<sup>3</sup> For the complete sample of 80 models, the mean correlation coefficient of the curve fitting was 0.98. The authors suggested that a fourth-order polynomial function, derived from a combination of a parabola and an ellipse, was suitable for investigating gender differences in dental arch shape. However, with respect to changes in dental arch perimeter dimensions and the computational models for arch expansion curves, the beta function has been shown to represent the dental arch curve more accurately. Subsequently, in 2015, Lee et al. introduced the Gaussian functional mixture model to calculate the dental arch curve.<sup>4</sup> The dental arches were modeled using a symmetric I-spline function and subsequently clustered with a functional gaussian mixture model. The results demonstrated that this approach achieved greater accuracy and lower variance. It was not until 2023 that Bogdanov et al. introduced second-order curves for modeling dental arch shape.<sup>5</sup> The coordinates of the central incisors, canines, and second molars were marked, followed by mathematical modeling using a second-order curve. The results indicated that the ellipse was the most suitable curve for describing the mandibular and maxillary dental arch shapes in orthodontics.

Based on previous studies, the dental arch curve has been calculated from the lines of occlusion of the teeth using a mathematical formula. However, different types of orthodontic treatment and variations in maxillary–mandibular occlusal relationships require

**Table 1** Overview of methods for calculating dental arch form and curvature. The table lists years, author, formula, type and reference.

| Years | Author          | Formula                           | Type               | Reference |
|-------|-----------------|-----------------------------------|--------------------|-----------|
| 1975  | Pepe            | Polynomial equations              | Lines of occlusion | 2         |
| 1998  | Braun et al.    | Beta function curve               | Lines of occlusion | 3         |
| 2015  | Lee et al.      | Functional Gaussian mixture model | Lines of occlusion | 4         |
| 2023  | Bogdanov et al. | Second-order curve                | Lines of occlusion | 5         |

correspondingly appropriate calculation formulas. In addition, age and gender should also be taken into consideration. Future research should further investigate the suitability of artificial intelligence algorithms for dental arch curve alignment. This will help improve the accuracy and effectiveness of restoration design and orthodontic treatment.

### Declaration of competing interest

The authors have no conflicts of interest relevant to this article.

### Acknowledgments

This research was funded by a general grant from the National Science and Technology Council, Taiwan (NSTC 114-2314-B-038-051) to Wei-Chun Lin.

### References

1. Tseng MH, Lin PR, Lin YC, Lin WC. Exploring the applications of artificial intelligence in various commercial dental professional software. *J Dent Sci* 2025;20:1300–2.
2. Pepe SH. Polynomial and catenary curve fits to human dental arches. *J Dent Res* 1975;54:1124–32.
3. Braun S, Hnat WP, Fender DE, Legan HL. The form of the human dental arch. *Angle Orthod* 1998;68:29–36.
4. Lee KE, Lim J, Won JH, Lee S, Lee SJ. Finding standard dental arch forms from a nationwide standard occlusion study using a Gaussian functional mixture model. *J Korean Surg Soc* 2015;44:477–89.
5. Bogdanov V, Grigorenko OY, Malanchuk V, Tormakhov M. Mechanical-mathematical modeling of the shape of dental arches for orthognathic occlusion. *J Math Sci* 2023;277:145–52.

Li-Tong Zheng  
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan

Sheng-Yang Lee  
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan  
Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

Yu-Chieh Lin  
Digital Medicine Center, Translational Health Research Institute, Vilnius University, Vilnius, Lithuania

Wei-Chun Lin\*  
Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan  
School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan

\* Corresponding author. School of Dental Technology, College of Oral Medicine, Taipei Medical University, No. 250, Wu-Xing Street, Taipei, 11031, Taiwan.  
E-mail address: [weichun1253@tmu.edu.tw](mailto:weichun1253@tmu.edu.tw) (W.-C. Lin)

Received 29 August 2025  
Final revision received 30 August 2025  
Available online 13 September 2025